• Maria Ina Arnone
  • Maria Byrne
  • Pedro MartinezEmail author


Echinoderms are a phylum of invertebrate deuterostomes that are morphologically characterized by a fivefold (pentameric) symmetric adult body plan. There are five extant subtaxa, Crinoidea (e.g., sea lilies and feather stars), Asteroidea (e.g., sea stars), Ophiuroidea (e.g., brittle stars), Echinoidea (e.g., sea urchins), and Holothuroidea (e.g., sea cucumbers) (Fig. 1.1). Studies of morphology and molecules demonstrate the existence of two higher-order subphylum clades: Pelmatozoa (Crinoidea) and Eleutherozoa (the remaining classes). Echinodermata together with Hemichordata form the clade Ambulacraria (to which some authors add the enigmatic Xenacoelomorpha group). This grouping is the sister to the Chordata.


Brittle Star Ciliary Band Radial Nerve Cord Larval Skeleton Feather Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors of this chapter would like to acknowledge the invaluable collaboration of different people that helped us to revise the text and clarify our ideas. All took their time and sent us extensive comments on many aspects of the chapter. We would like to acknowledge, specially, the help offered by Andrew Cameron (CalTech), Chris Mah (Smithsonian, National Museum of Natural History), Valerie Morris (University of Sydney), Rich Mooi (California Academy of Sciences), Claus Nielsen (University Copenhagen), and Samuel Zamora (Universidad Zaragoza).

Also we want to express our gratitude to those that shared with us some of the pictures that are included in this chapter, in particular Koji Akasaka (School of Science, University of Tokyo), Peter Bryant (UC Irvine), Anna Czarkwiani (UC London), Paula Cisternas (University Sydney), David Dylus (UC London), Christian Gache (Observatoire Océanologique de Villefranche-sur-Mer), Veronica Hinman (Carnegie Mellon University), Hisanori Kohtsuka (Misaki Marine Biological Station, University of Tokyo), David McClay (Duke University), Hiroaki Nakano (Shimoda Marine Research Center, University of Tsukuba), Paola Oliveri (UC London), and Mattias Ormestad (SciLifeLab). Our special thanks to Santiago Valero-Medranda for the effort in preparing the many diagrams of larvae that are included in this chapter. Valerie Morris is acknowledged for providing Fig. 1.17.


  1. Adams NL, Campanale JP, Foltz KR (2012) Proteomic responses of sea urchin embryos to stressful ultraviolet radiation. Integr Comp Biol 52:665–680PubMedGoogle Scholar
  2. Amemiya S (1989) Electron microscopic studies on primary mesenchyme cell ingression and gastrulation in relation to vegetal pole cell behavior in sea urchin embryos. Exp Cell Res 183:453–462PubMedGoogle Scholar
  3. Andrikou C, Iovene E, Rizzo F, Oliveri P, Arnone MI (2013) Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors. Evodevo 4:33PubMedCentralPubMedGoogle Scholar
  4. Angerer LM, Yaguchi S, Angerer RC, Burke RD (2011) The evolution of nervous system patterning: insights from sea urchin development. Development 138:3613–3623PubMedCentralPubMedGoogle Scholar
  5. Annunziata R, Arnone MI (2014) A dynamic regulatory network explains ParaHox gene control of gut patterning in the sea urchin. Development 141:2462–2472PubMedGoogle Scholar
  6. Annunziata R, Martinez P, Arnone MI (2013) Intact cluster and chordate-like expression of ParaHox genes in a sea star. BMC Biol 11:68PubMedCentralPubMedGoogle Scholar
  7. Annunziata R, Perillo M, Andrikou C, Cole AG, Martinez P, Arnone MI (2014) Pattern and process during sea urchin gut morphogenesis: the regulatory landscape. Genesis 52:251–268PubMedGoogle Scholar
  8. Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber R, Barber A, Bartsch I, Berta A, Blazewicz-Paszkowycz M, Bock P, Boxshall G, Boyko CB, Brandao SN, Bray RA, Bruce NL, Cairns SD, Chan TY, Cheng LN, Collins AG, Cribb T, Curini-Galletti M, Dahdouh-Guebas F, Davie PJF, Dawson MN, De Clerck O, Decock W, De Grave S, de Voogd NJ, Domning DP, Emig CC, Erseus C, Eschmeyer W, Fauchald K, Fautin DG, Feist SW, Fransen CHJM, Furuya H, Garcia-Alvarez O, Gerken S, Gibson D, Gittenberger A, Gofas S, Gomez-Daglio L, Gordon DP, Guiry MD, Hernandez F, Hoeksema BW, Hopcroft RR, Jaume D, Kirk P, Koedam N, Koenemann S, Kolb JB, Kristensen RM, Kroh A, Lambert G, Lazarus DB, Lemaitre R, Longshaw M, Lowry J, Macpherson E, Madin LP, Mah C, Mapstone G, McLaughlin PA, Mees J, Meland K, Messing CG, Mills CE, Molodtsova TN, Mooi R, Neuhaus B, Ng PKL, Nielsen C, Norenburg J, Opresko DM, Osawa M, Paulay G, Perrin W, Pilger JF, Poore GCB, Pugh P, Read GB, Reimer JD, Rius M, Rocha RM, Saiz-Salinas JI, Scarabino V, Schierwater B, Schmidt-Rhaesa A, Schnabel KE, Schotte M, Schuchert P, Schwabe E, Segers H, Self-Sullivan C, Shenkar N, Siegel V et al (2012) The magnitude of global marine species diversity. Curr Biol 22:2189–2202PubMedGoogle Scholar
  9. Arenas-Mena C, Martinez P, Cameron RA, Davidson EH (1998) Expression of the Hox gene complex in the indirect development of a sea urchin. Proc Natl Acad Sci U S A 95:13062–13067PubMedCentralPubMedGoogle Scholar
  10. Arenas-Mena C, Cameron AR, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631–4643PubMedGoogle Scholar
  11. Arenas-Mena C, Cameron RA, Davidson EH (2006) Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo. Dev Growth Differ 48:463–472PubMedGoogle Scholar
  12. Arnone MI, Rizzo F, Annunciata R, Cameron RA, Peterson KJ, Martinez P (2006) Genetic organization and embryonic expression of the ParaHox genes in the sea urchin S. purpuratus: insights into the relationship between clustering and colinearity. Dev Biol 300:63–73PubMedGoogle Scholar
  13. Balser EJ (2002) Phylum echinodermata: crinoidea. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, San Diego, pp 463–482Google Scholar
  14. Bannister R, McGonnell IM, Graham A, Thorndyke MC, Beesley PW (2005) Afuni, a novel transforming growth factor-beta gene is involved in arm regeneration by the brittle star Amphiura filiformis. Dev Genes Evol 215:393–401PubMedGoogle Scholar
  15. Baughman KW, McDougall C, Cummins SF, Hall M, Degnan BM, Satoh N, Shoguchi E (2014) Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster Planci. Genesis 52(12):952–958Google Scholar
  16. Ben Khadra Y, Said K, Thorndyke M, Martinez P (2014) Homeobox genes expressed during echinoderm arm regeneration. Biochem Genet 52:166–180PubMedGoogle Scholar
  17. Birenheide R, Tamori M, Motokawa T, Ohtani M, Iwakoshi E, Muneoka Y, Fujita T, Minakata H, Nomoto K (1998) Peptides controlling stiffness of connective tissue in sea cucumbers. Biol Bull 194:253–259PubMedGoogle Scholar
  18. Bonasoro F, Candia Carnevali MD, Sala F, Patruno M, Thorndyke MC (1999) Regenerative potential of crinoid arm explants. In: Candia Carnevali MD, Bonasoro F (eds) Echinoderm research 1998. Balkema, Rotterdam, pp 133–138Google Scholar
  19. Boveri T (1902) Uber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh Phys Med Ges Wurzburg 35:67–90Google Scholar
  20. Burke RD (1989) Echinoderm metamorphosis: comparative aspects of the change in form. In: echinoderm studies, vol 3. Balkema, Rotterdam, pp 81–107Google Scholar
  21. Burke RD, Alvarez CM (1988) Development of the esophageal muscles in embryos of the sea urchin Strongylocentrotus purpuratus. Cell Tissue Res 252:411–417PubMedGoogle Scholar
  22. Burke RD, Myers RL, Sexton TL, Jackson C (1991) Cell movements during the initial phase of gastrulation in the sea urchin embryo. Dev Biol 146:542–557PubMedGoogle Scholar
  23. Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang D, Mellott D, Olinski R, Hallbook F, Thorndyke MC (2006) A genomic view of the sea urchin nervous system. Dev Biol 300:434–460PubMedCentralPubMedGoogle Scholar
  24. Burke RD, Moller DJ, Krupke OA, Taylor VJ (2014) Sea urchin neural development and the metazoan paradigm of neurogenesis. Genesis 52:208–221PubMedGoogle Scholar
  25. Burns G, Ortega-Martinez O, Dupont S, Thorndyke MC, Peck LS, Clark MS (2012) Intrinsic gene expression during regeneration in arm explants of Amphiura filiformis. J Exp Mar Biol Ecol 413:106–112Google Scholar
  26. Bury H (1895) The metamorphosis of echinoderms. Quart J Microsc Sci (NS) 38:45–135Google Scholar
  27. Bury H (1989) Studies in the embryology of echinoderms. Quart J Microsc Sci (NS) 29:409–449, plates XXXVII–XXXIXGoogle Scholar
  28. Byrne M (1996) Viviparity and intragonadal cannibalism in the diminutive sea stars Patiriella vivipara and P. parvivipara (family Asterinidae). Mar Biol 125:551–567Google Scholar
  29. Byrne M (2001) The morphology of autotomy structures in the sea cucumber Eupentacta quinquesemita before and during evisceration. J Exp Biol 204:849–863PubMedGoogle Scholar
  30. Byrne M (2006) Life history diversity and evolution in the Asterinidae. Integr Comp Biol 46:243–254PubMedGoogle Scholar
  31. Byrne M, Barker MF (1991) Embryogenesis and larval development of the asteroid Patiriella regularis viewed by light and scanning electron-microscopy. Biol Bull 180:332–345Google Scholar
  32. Byrne M, Selvakumaraswamy P (2002) Phylum Echinodermata: ophiuroidea. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, San Diego, pp 488–498Google Scholar
  33. Byrne M, Villinski JT, Cisternas P, Siegel RK, Popodi E, Raff RA (1999) Maternal factors and the evolution of developmental mode: evolution of oogenesis in Heliocidaris erythrogramma. Dev Genes Evol 209:275–283PubMedGoogle Scholar
  34. Byrne M, Cisternas P, Elia L, Relf B (2005) Engrailed is expressed in larval development and in the radial nervous system of Patiriella sea stars. Dev Genes Evol 215:608–617PubMedGoogle Scholar
  35. Byrne M, Nakajima Y, Chee FC, Burke RD (2007) Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria. Evol Dev 9:432–445PubMedGoogle Scholar
  36. Cameron RA, Davidson EH (1991) Cell type specification during sea urchin development. Trends Genet 7:212–218PubMedGoogle Scholar
  37. Cameron RA, Fraser SE, Britten RJ, Davidson EH (1991) Macromere cell fates during sea urchin development. Development 113:1085–1091PubMedGoogle Scholar
  38. Candia Carnavali MD, Burighel P (2010) Regeneration in echinoderms and ascidians. In: eLS. Wiley, ChichesterGoogle Scholar
  39. Candia Carnevali MD (2006) Regeneration in echinoderms: repair, regrowth, cloning. ISJ 3:64–76Google Scholar
  40. Candia Carnevali MD, Bonasoro F (2001a) Introduction to the biology of regeneration in echinoderms. Microsc Res Tech 55:365–368PubMedGoogle Scholar
  41. Candia Carnevali MD, Bonasoro F (2001b) Microscopic overview of crinoid regeneration. Microsc Res Tech 55:403–426PubMedGoogle Scholar
  42. Chia FS (1968) The embryology of the brooding starfish, Leptasterias hexactis (Stimpson). Acta Zool 49:321–354Google Scholar
  43. Chia FS, Burke RD (1978) Echinoderm metamorphosis: fate of larval structures. In: Chia FS, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier North Holland Biomedical Press, New York, pp 219–234Google Scholar
  44. Cisternas P, Byrne M (2009) Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua. Dev Genes Evol 219:613–618PubMedGoogle Scholar
  45. Cobb JLS (1995) The nervous system of echinodermata: recent results and new approaches. In: Breidbach O, Kutsche W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser Verlag, BaselGoogle Scholar
  46. Cole AG, Rizzo F, Martinez P, Fernandez-Serra M, Arnone MI (2009) Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut. Development 136:541–549PubMedGoogle Scholar
  47. Croce JC, McClay DR (2010) Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137:83–91PubMedCentralPubMedGoogle Scholar
  48. Croce J, Lhomond G, Lozano JC, Gache C (2001) ske-T, a T-box gene expressed in the skeletogenic mesenchyme lineage of the sea urchin embryo. Mech Dev 107:159–162PubMedGoogle Scholar
  49. Czarkwiani A, Dylus DV, Oliveri P (2013) Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis. Gene Expr Patterns GEP 13:464–472PubMedGoogle Scholar
  50. Dan K (1960) Cyto-embryology of echinoderms and amphibia. Int Rev Cytol 9:321–367PubMedGoogle Scholar
  51. Dan JC, Hagiwara Y (1967) Studies on the acrosome. IX. Course of acrosome reaction in the starfish. J Ultrastruct Res 18:562–579PubMedGoogle Scholar
  52. Dan K, Okazaki K (1956) Cyto-embryological studies of sea urchin. III. Role of the secondary mesenchyme cells in the formation of the primitive gut in the sea urchin larvae. Biol Bull 110:29–42Google Scholar
  53. David B, Mooi R (1998) Major events in the evolution of echinoderms viewed by the light of embryology. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema, Rotterdam, pp 21–28Google Scholar
  54. David ES, Luke NH, Livingston BT (1999) Characterization of a gene encoding a developmentally regulated winged helix transcription factor of the sea urchin Strongylocentrotus purpuratus. Gene 236:97–105PubMedGoogle Scholar
  55. David B, Lefebvre B, Mooi R, Parsley R (2000) Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology 26:529–555Google Scholar
  56. Davidson EH (1989) Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism. Development 105:421–445PubMedGoogle Scholar
  57. Davidson EH (1990) How embryos work: a comparative view of diverse modes of cell fate specification. Development 108:365–389PubMedGoogle Scholar
  58. Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic/Elsevier, San DiegoGoogle Scholar
  59. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800PubMedGoogle Scholar
  60. Davidson EH, Cameron RA, Ransick A (1998) Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms. Development 125:3269–3290PubMedGoogle Scholar
  61. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678PubMedGoogle Scholar
  62. Derbès M (1847) Observations sur le méchanisme et les phénomènes qui accompagnent la formation de l’embryon chez l’oursin comestible. Ann Sci Nat Ill Série Zool 8:80–98Google Scholar
  63. Dolmatov IY, Ferreri P, Bonasoro F, Candia Carnevali MD (2001) Visceral regeneration in the crinoid Antedon mediterranea. In: Feral JP, Bruno D (eds) Echinoderm research. A. A. Balkema, RotterdamGoogle Scholar
  64. Domazet-Loso T, Tautz D (2010) A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468:815-U107Google Scholar
  65. Driesch H (1892) The potency of the first two cleavage cells in echinoderm development: experimental production of partial and double formations. In: Willier BH, Oppenheimer JM (eds) Foundations of experimental embryology. Hafner, New York, 1974Google Scholar
  66. Du HX, Bao ZM, Hou R, Wang S, Su HL, Yan JJ, Tian ML, Li Y, Wei W, Lu W, Hu XL, Wang S, Hu JJ (2012) Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867). PLoS One 7:e33311PubMedCentralPubMedGoogle Scholar
  67. Dupont S, Thorndyke MC (2006) Growth or differentiation? Adaptive regeneration in the brittlestar Amphiura filiformis. J Exp Biol 209:3873–3881PubMedGoogle Scholar
  68. Eaves AA, Palmer AR (2003) Reproduction: widespread cloning in echinoderm larvae. Nature 425:146PubMedGoogle Scholar
  69. Edmondson CH (1935) Autotomy and regeneration in Hawaiian starfishes. Occas Pap Bernice Pauahi Bishop Mus 11:3–20Google Scholar
  70. Emlet RB (1988) Larval form and metamorphosis of a primitive Sea-urchin, Eucidaris thouarsii (Echinodermata, Echinoidea, Cidaroida), with implications for developmental and phylogenetic studies. Biol Bull 174:4–19Google Scholar
  71. Emlet RB (1995) Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma. Dev Biol 167:405–415PubMedGoogle Scholar
  72. Emlet RB, Joung CM, George SB (2002) Phylum echinodermata: echinoidea. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, San Diego, pp 531–551Google Scholar
  73. Emson RH, Wilkie IC (1980) Fission and autotomy in echinoderms. Oceanogr Mar Biol Annu Rev 18:155–250Google Scholar
  74. Elia L, Selvakumaraswamy P, Byrne M (2009) Nervous system development in feeding and nonfeeding Asteroid larvae and the early juvenile. Biol Bull 216:322–334Google Scholar
  75. Elia L, Cisternas P, Byrne M (2010) Characterization and expression of a sea star otx orthologue (ProtxB1/2) in the larva of Paririella regularis. Gene Exp Patterns 216:322–334Google Scholar
  76. Ettensohn CA (1984) Primary invagination of the vegetal plate during sea urchin gastrulation. Am Zool 24:571–588Google Scholar
  77. Ettensohn CA (1985) Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells. Dev Biol 112:383–390PubMedGoogle Scholar
  78. Ettensohn CA, Ingersoll EP (1992) Morphogenesis of the sea urchin embryo. Morphogenesis: an analysis of the development of biological structures. Marcel Dekker, New York, pp 189–262Google Scholar
  79. Ettensohn CA, Ruffins SW (1993) Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells. Development 117:1275–1285PubMedGoogle Scholar
  80. Ferkowicz MJ, Raff RA (2001) Wnt gene expression in sea urchin development: heterochronies associated with the evolution of developmental mode. Evol Dev 3:24–33PubMedGoogle Scholar
  81. Fink RD, McClay DR (1985) Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev Biol 107:66–74PubMedGoogle Scholar
  82. Foerder CA, Shapiro BM (1977) Release of ovoperoxidase from sea urchin eggs hardens the fertilization membrane with tyrosine crosslinks. Proc Natl Acad Sci U S A 74:4214–4218PubMedCentralPubMedGoogle Scholar
  83. Fol MH (1877) Sur le premier développement d’une Étoile de mer. Comptes Rendus 84:357–360Google Scholar
  84. Foote M (1999) Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25:1–115Google Scholar
  85. Fortini ME, Artavanis-Tsakonas S (1994) The suppressor of hairless protein participates in notch receptor signaling. Cell 79:273–282PubMedGoogle Scholar
  86. Franco CF, Santos R, Coelho AV (2011a) Exploring the proteome of an echinoderm nervous system: 2-DE of the sea star radial nerve cord and the synaptosomal membranes subproteome. Proteomics 11:1359–1364PubMedGoogle Scholar
  87. Franco CF, Santos R, Coelho AV (2011b) Proteome characterization of sea star coelomocytes – the innate immune effector cells of echinoderms. Proteomics 11:3587–3592PubMedGoogle Scholar
  88. Franco CF, Soares R, Pires E, Santos R, Coelho AV (2012) Radial nerve cord protein phosphorylation dynamics during starfish arm tip wound healing events. Electrophoresis 33:3764–3778PubMedGoogle Scholar
  89. Franklin LE (1970) Fertilization and the role of the acrosomal region in non-mammals. Biol Reprod 2(Suppl 2):159–176PubMedGoogle Scholar
  90. Fresques T, Zazueta-Novoa V, Reich A, Wessel GM (2014) Selective accumulation of germ-line associated gene products in early development of the sea star and distinct differences from germ-line development in the sea urchin. Dev Dyn 243:568–587PubMedCentralPubMedGoogle Scholar
  91. Gan L, Mao CA, Wikramanayake A, Angerer LM, Angerer RC, Klein WH (1995) An orthodenticle-related protein from Strongylocentrotus purpuratus. Dev Biol 167:517–528PubMedGoogle Scholar
  92. Gao F, Davidson EH (2008) Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc Natl Acad Sci U S A 105:6091–6096PubMedCentralPubMedGoogle Scholar
  93. Gemmill JF (1914) The development and certain points in the adult structure of the starfish Asterias rubens L. Philos Trans R Soc Lond B 205:213–294Google Scholar
  94. Ghiglione C, Lhomond G, Lepage T, Gache C (1994) Structure of the sea urchin hatching enzyme gene. Eur J Biochem 219:845–854PubMedGoogle Scholar
  95. Gibson AW, Burke RD (1985) The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus. Dev Biol 107:414–419PubMedGoogle Scholar
  96. Gibson AW, Burke RD (1987) Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos. Exp Cell Res 173:546–557PubMedGoogle Scholar
  97. Giusti AF, Hoang KM, Foltz KR (1997) Surface localization of the sea urchin egg receptor for sperm. Dev Biol 184:10–24PubMedGoogle Scholar
  98. Glabe CG, Vacquier VD (1977) Isolation and characterization of the vitelline layer of sea urchin eggs. J Cell Biol 75:410–421PubMedGoogle Scholar
  99. Glabe CG, Vacquier VD (1978) Egg surface glycoprotein receptor for sea urchin sperm bindin. Proc Natl Acad Sci U S A 75:881–885PubMedCentralPubMedGoogle Scholar
  100. Gondolf AL (2000) Light and scanning electron microscopic observations on the developmental biology of the common starfish, Asterias rubens Linne. Ophelia 52:153–170Google Scholar
  101. Goss RJ (1969) Principles of regeneration. Academic, New YorkGoogle Scholar
  102. Gosselin P, Jangoux M (1998) From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata, Echinoida). Zoomorphology 118:31–43Google Scholar
  103. Haag ES (2005) Echinoderm rudiments, rudimentary bilaterians, and the origin of the chordate CNS. Evol Dev 7:280–281PubMedGoogle Scholar
  104. Hall HG (1978) Hardening of the sea urchin fertilization envelope by peroxidase-catalyzed phenolic coupling of tyrosines. Cell 15:343–355PubMedGoogle Scholar
  105. Hara Y, Yamaguchi M, Akasaka K, Nakano H, Nonaka M, Amemiya S (2006) Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Dev Genes Evol 216:797–809PubMedGoogle Scholar
  106. Hardin J (1988) The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation. Development 103:317–324PubMedGoogle Scholar
  107. Hardin JD, Cheng LY (1986) The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev Biol 115:490–501Google Scholar
  108. Hardin J, McClay DR (1990) Target recognition by the archenteron during sea urchin gastrulation. Dev Biol 142:86–102PubMedGoogle Scholar
  109. Hart MW, Johnson SL, Addison JA, Byrne M (2004) Strong character incongruence and character choice in phylogeny of sea stars of the Asterinidae. Invertebr Biol 123:343–356Google Scholar
  110. Heinzeller T, Welsch U (1999) The complex of notochord/neural plate in chordates and the complex hydrocoel/ectoneural cord in echinoderms- analogous or homologous? In: Candia-Carnevali MD, Bonasoro F (eds) Echinoderm research. Balkema, RotterdamGoogle Scholar
  111. Heinzeller T, Welsch U (2001) The echinoderm nervous system and its phylogenetic interpretation. In: brain evolution and cognition. Wiley, New YorkGoogle Scholar
  112. Hendler G (1991) Echinodermata: Ophiuroidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, echinoderms and lophophorates, vol VI. Boxwood, Pacific Grove, pp 356–479Google Scholar
  113. Hendler G, Byrne M (1987) Fine structure of the dorsal arm plate of Ophiocoma wendtii – evidence for a photoreceptor system (Echinodermata, Ophiuroidea). Zoomorphology 107:261–272Google Scholar
  114. Hernroth B, Farahani F, Brunborg G, Dupont S, Dejmek A, Skold HN (2010) Possibility of mixed progenitor cells in sea star arm regeneration. J Exp Zool B Mol Dev Evol 314:457–468PubMedGoogle Scholar
  115. Hinman VF, Davidson EH (2007) Evolutionary plasticity of developmental gene regulatory network architecture. Proc Natl Acad Sci U S A 104:19404–19409PubMedCentralPubMedGoogle Scholar
  116. Hinman VF, Nguyen AT, Cameron RA, Davidson EH (2003a) Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc Natl Acad Sci U S A 100:13356–13361PubMedCentralPubMedGoogle Scholar
  117. Hinman VF, Nguyen AT, Davidson EH (2003b) Expression and function of a starfish Otx ortholog, Am Otx: a conserved role for Otx proteins in endoderm development that predates divergence of the eleutherozoa. Mech Dev 120:1165–1176PubMedGoogle Scholar
  118. Hinman VF, Yankura KA, McCauley BS (2009) Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms. Biochim Biophys Acta Gene Regul Mech 1789:326–332Google Scholar
  119. Hodor PG, Ettensohn CA (1998) The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Dev Biol 199:111–124PubMedGoogle Scholar
  120. Hoekstra LA, Moroz LL, Heyland A (2012) Novel insights into the echinoderm nervous system from histaminergic and FMRFaminergic-like cells in the sea cucumber Leptosynapta clarki. PLoS One 7:e44220PubMedCentralPubMedGoogle Scholar
  121. Holland ND (1981) Electron microscopic study of development in a sea cucumber, Stichopus tremulus (Holothuroidea), from unfertilized egg through hatched blastula. Acta Zool 62:89–111Google Scholar
  122. Holland ND (1991) Echinodermata: Crinoidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol VI, Echinoderms and Lophophorates. Boxwood, Pacific GrooveGoogle Scholar
  123. Holm K, Dupont S, Skold H, Stenius A, Thorndyke M, Hernroth B (2008) Induced cell proliferation in putative haematopoietic tissues of the sea star, Asterias rubens (L.). J Exp Biol Part B 211:2551–2558Google Scholar
  124. Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407:963–970PubMedGoogle Scholar
  125. Hörstadius SO (1939) The mechanics of sea urchin development studied by operative methods. Biol Rev 14:47Google Scholar
  126. Horstadius SO (1973) Experimental embryology of echinoderms. Clarendon, OxfordGoogle Scholar
  127. Hotchkiss FHC (1998) A “rays-as-appendages” model for the origin of pentamerism in echinoderms. Paleobiology 24:200–214Google Scholar
  128. Hotchkiss FHC (2012) Growth zones and extraxial-axial skeletal homologies in Asteroidea (Echinodermata). Proc Biol Soc Wash 125:106–121Google Scholar
  129. Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, Davidson EH (2006) Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev Biol 300:74–89PubMedGoogle Scholar
  130. Huet M (1975) Le róle du système nerveux au cours de la régéneration du bras chez une étoile de mer, Asterina gibbosa Penn (Echinoderme, Astéride). J Embryol Exp Morph 33:535–552PubMedGoogle Scholar
  131. Hylander BL, Summers RG (1982) An ultrastructural immunocytochemical localization of hyalin in the sea urchin egg. Dev Biol 93:368–380PubMedGoogle Scholar
  132. Hyman LH (1955) The invertebrates: Echinodermata, vol IV. McGraw-Hill, New YorkGoogle Scholar
  133. Imai KS, Stolfi A, Levine M, Satou Y (2009) Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136:285–293PubMedGoogle Scholar
  134. Ishimoda-Takagi T, Chino I, Sato H (1984) Evidence for the involvement of muscle tropomyosin in the contractile elements of the coelom-esophagus complex in sea urchin embryos. Dev Biol 105:365–376PubMedGoogle Scholar
  135. Jaffe LA (1976) Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature 261:68–71PubMedGoogle Scholar
  136. Janies D (2001) Phylogenetic relationships of extant echinoderm classes. Can J Zool 79:1232–1250Google Scholar
  137. Janies DA, Voight JR, Daly M (2011) Echinoderm phylogeny including Xyloplax, a progenetic asteroid. Syst Biol 60:420–438PubMedGoogle Scholar
  138. Jefferies RPS (1968) The subphylum Calcichordata (Jefferies, 1967) primitive fossil chordates with echinoderm affinities. Bull Br Mus Nat Hist (Geol) 16:243–339Google Scholar
  139. Jeffery CH, Emlet RB, Littlewood DTJ (2003) Phylogeny and evolution of developmental mode in temnopleurid echinoids. Mol Phylogenet Evol 28:99–118PubMedGoogle Scholar
  140. Ji C, Wu L, Zhao W, Wang S, Lv J (2012) Echinoderms have bilateral tendencies. PLoS One 7:e28978PubMedCentralPubMedGoogle Scholar
  141. Juliano CE, Yajima M, Wessel GM (2010) Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo. Dev Biol 337:220–232PubMedCentralPubMedGoogle Scholar
  142. Just EE (1919) The fertilization reaction in Echina rachnius parma I. Cortical response of egg to insemination. Biol Bull 36:1–10Google Scholar
  143. Kinnander H, Gustafson T (1960) Further studies on the cellular basis of gastrulation in the sea urchin larva. Exp Cell Res 19:278–290PubMedGoogle Scholar
  144. Koga H, Morino Y, Wada H (2014) The echinoderm larval skeleton as a possible model system for experimental evolutionary biology. Genesis 52:186–192PubMedGoogle Scholar
  145. Kohtsuka H, Nakano H (2005) Development and growth of the feather star Decametra tigrina (Crinoidea), with emphasis on the morphological differences between adults and juveniles. J Mar Biol Assoc U K 85:1503–1510Google Scholar
  146. Kondo M, Akasaka K (2012) Current status of echinoderm genome analysis – what do we know? Curr Genom 13:134–143Google Scholar
  147. Kroh A, Mooi R (2011) World echinoidea database. Available online at Accessed 11 Apr 2014
  148. Kuraishi R, Osanai K (1992) Cell movements during gastrulation of starfish larvae. Biol Bull 183:258–268Google Scholar
  149. Kurokawa D, Kitajima T, Mitsunaga-Nakatsubo K, Amemiya S, Shimada H, Akasaka K (1999) HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo. Mech Dev 80:41–52PubMedGoogle Scholar
  150. Lane MC, Koehl MA, Wilt F, Keller R (1993) A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin. Development 117:1049–1060PubMedGoogle Scholar
  151. Lee PY, Davidson EH (2004) Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors. Gene Expr Patterns 5:161–165PubMedGoogle Scholar
  152. Lee J, Byrne M, Uthicke S (2008) The influence of population density in fission and growth of Holothuria atra in natural mesocosms. J Exp Mar Biol Ecol 365:126–135Google Scholar
  153. Lepage T, Sardet C, Gache C (1992) Spatial expression of the hatching enzyme gene in the sea urchin embryo. Dev Biol 150:23–32PubMedGoogle Scholar
  154. Levine AE, Walsh KA, Fodor EJ (1978) Evidence of an acrosin-like enzyme in sea urchin sperm. Dev Biol 63:299–306PubMedGoogle Scholar
  155. Lhomond G, McClay DR, Gache C, Croce JC (2012) Frizzled1/2/7 signaling directs beta-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis. Development 139:816–825PubMedCentralPubMedGoogle Scholar
  156. Li E, Cui M, Peter IS, Davidson EH (2014) Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo. Proc Natl Acad Sci U S A 111:E906–E913PubMedCentralPubMedGoogle Scholar
  157. Littlewood DTJ, Smith AB, Clough KA, Emson RH (1997) The interrelationships of the echinoderm classes: morphological and molecular evidence. Biol J Linn Soc 61:409–438Google Scholar
  158. Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389:718–721PubMedGoogle Scholar
  159. Lowe CJ, Issel-Tarver L, Wray GA (2002) Gene expression and larval evolution: changing roles of distal-less and orthodenticle in echinoderm larvae. Evol Dev 4:111–123PubMedGoogle Scholar
  160. Luo YJ, Su YH (2012) Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. PLoS Biol 10:e1001402PubMedCentralPubMedGoogle Scholar
  161. MacBride EW (1986) The development of Asterina gibbosa. Q J Microsc Sci 38:339–411Google Scholar
  162. Mah CL, Blake DB (2012) Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS One 7:e35644PubMedCentralPubMedGoogle Scholar
  163. Malinda KM, Fisher GW, Ettensohn CA (1995) Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo. Dev Biol 172:552–566PubMedGoogle Scholar
  164. Mann K, Wilt FH, Poustka AJ (2010) Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Sci 8:33PubMedCentralPubMedGoogle Scholar
  165. Martins GG, Summers RG, Morrill JB (1998) Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus. Dev Biol 198:330–342PubMedGoogle Scholar
  166. Mashanov VS, Garcia-Arraras JE (2011) Gut regeneration in holothurians: a snapshot of recent developments. Biol Bull 221:93–109PubMedGoogle Scholar
  167. Mashanov VS, Zueva OR, Heinzeller T (2008) Regeneration of the radial nerve cord in a holothurian: a promising new model system for studying post-traumatic recovery in the adult nervous system. Tissue Cell 40:351–372PubMedGoogle Scholar
  168. Mashanov VS, Zueva OR, Rojas-Catagena C, Garcia-Arraras JE (2010) Visceral regeneration in a sea cucumber involves extensive expression of survivin and mortalin homologs in the mesothelium. BMC Dev Biol 10:117PubMedCentralPubMedGoogle Scholar
  169. Mashanov VS, Zueva OR, Garcia-Arraras JE (2013) Radial glial cells play a key role in echinoderm neural regeneration. BMC Biol 11:49PubMedCentralPubMedGoogle Scholar
  170. Materna SC, Davidson EH (2012) A comprehensive analysis of delta signaling in pre-gastrular sea urchin embryos. Dev Biol 364:77–87PubMedCentralPubMedGoogle Scholar
  171. Materna SC, Nam J, Davidson EH (2010) High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development. Gene Expr Patterns 10:177–184PubMedCentralPubMedGoogle Scholar
  172. Mattson P (1976) Regeneration. Bobbs-Merrill, IndianapolisGoogle Scholar
  173. McCauley BS, Weideman EP, Hinman VF (2010) A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. Dev Biol 340:200–208PubMedGoogle Scholar
  174. McCauley BS, Wright EP, Exner C, Kitazawa C, Hinman VF (2012) Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms. EvoDevo 3:17PubMedCentralPubMedGoogle Scholar
  175. McClay DR, Gross J, Peterson R, Bradham C (2004) Mechanism of gastrulation in the Sea urchin. In: Stern C (ed) Gastrulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 123–138Google Scholar
  176. McEdward LR, Miner BG (2001) Larval and life-cycle patterns in echinoderms. Can J Zool 79:1125–1170Google Scholar
  177. McEdward LR, Jaeckle WB, Komatsu M (2002) Phylum Echinodermata: Asteroidea. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, San Diego, pp 419–503Google Scholar
  178. McIntyre DC, Lyons DC, Martik M, McClay DR (2014) Branching out: origins of the sea urchin larval skeleton in development and evolution. Genesis 52:173–185PubMedCentralPubMedGoogle Scholar
  179. Minsuk SB, Raff RA (2002) Pattern formation in a pentameral animal: induction of early adult rudiment development in sea urchins. Dev Biol 247:335–350PubMedGoogle Scholar
  180. Minsuk SB, Turner FR, Andrews ME, Raff RA (2009) Axial patterning of the pentaradial adult echinoderm body plan. Dev Genes Evol 219:89–101PubMedGoogle Scholar
  181. Molina MD, de Crozé N, Haillot E, Lepage T (2013) Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo. Curr Opin Genet Dev 23:445–453Google Scholar
  182. Mooi R, David B (1997) Skeletal homologies of echinoderms. Paleontol Soc Pap 3:305–335Google Scholar
  183. Mooi R, David B (2000) What a new model of skeletal homologies tells us about asteroid evolution. Am Zool 40:326–339Google Scholar
  184. Mooi R, David B (2008) Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes. Ann Rev Ecol Evol Syst 39:43–62Google Scholar
  185. Mooi R, David B, Marchand D (1994) Echinoderm skeletal homologies: classical morphology meets modern phylogenetics. In: David B, Guille A, Feral JP, Roux M (eds) Echinoderms through time. Balkema, Rotterdam, pp 87–95Google Scholar
  186. Mooi R, David B, Wray GA (2005) Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evol Dev 7:542–555PubMedGoogle Scholar
  187. Morris VB (1995) Apluteal development of the sea-urchin Holopneustes purpurescens Agassiz (Echinodermata, Echinoidea, Euechinoidea). Zool J Linn Soc 114:349–364Google Scholar
  188. Morris VB (2011) Coelomogenesis during the abbreviated development of the echinoid Heliocidaris erythrogramma and the developmental origin of the echinoderm pentameral body plan. Evol Dev 13:370–381PubMedGoogle Scholar
  189. Morris VB (2012) Early development of coelomic structures in an echinoderm larva and a similarity with coelomic structures in a chordate embryo. Dev Genes Evol 222:313–323PubMedGoogle Scholar
  190. Morris VB, Byrne M (2005) Involvement of two Hox genes and otx in echinoderm body-plan morphogenesis in the sea urchin Holopneustes purpurescens. J Exp Zool B Mol Dev Evol 304:456–467PubMedGoogle Scholar
  191. Morris VB, Byrne M (2014) Oral-aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens. Dev Genes Evol 224:1–11PubMedGoogle Scholar
  192. Morris VB, Zhao JT, Shearman DCA, Byrne M, Frommer M (2004) Expression of an Otx gene in the adult rudiment and the developing central nervous system in the vestibula larva of the sea urchin Holopneustes purpurescens. Int J Dev Biol 48:17–22PubMedGoogle Scholar
  193. Morris VB, Selvakumaraswamy P, Whan R, Byrne M (2009) Development of the five primary podia from the coeloms of a sea star larva: homology with the echinoid echinoderms and other deuterostomes. Proc Roy Soc B 276:1277–1284Google Scholar
  194. Morris VB, Selvakumaraswamy P, Whan R, Byrne M (2011) The coeloms in a late brachiolaria larva of the asterinid sea star Parvulastra exigua: deriving an asteroid coelomic model. Acta Zool 92:266–275Google Scholar
  195. Moss C, Hunter AJ, Thorndyke MC (1998) Patterns of bromodeoxyuridine incorporation and neuropeptide immunoreactivity during arm regeneration in the starfish Asterias rubens. Philos Trans R Soc Lond B Biol Sci 353:421–436PubMedCentralGoogle Scholar
  196. Mozingo NM, Chandler DE (1991) Evidence for the existence of two assembly domains within the sea urchin fertilization envelope. Dev Biol 146:148–157PubMedGoogle Scholar
  197. Mozzi D, Dolmatov IY, Bonasoro F, Carnevali MDC (2006) Visceral regeneration in the crinoid Antedon mediterranea: basic mechanisms, tissues and cells involved in gut regrowth. Centr Eur J Biol 1:609–635Google Scholar
  198. Nakajima Y, Kaneko H, Murray G, Burke RD (2004) Divergent patterns of neural development in larval echinoids and asteroids. Evol Dev 6:95–104PubMedGoogle Scholar
  199. Nakano H, Hibino T, Oji T, Hara Y, Amemiya S (2003) Larval stages of a living sea lily (stalked crinoid echinoderm). Nature 421:158–160PubMedGoogle Scholar
  200. Nakano H, Nakajima Y, Amemiya S (2009) Nervous system development of two crinoid species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus. Dev Genes Evol 219:565–576PubMedGoogle Scholar
  201. Nielsen C (2006) Homology of echinoderm radial nerve cords and the chordate neural tube??? Evol Dev 8:1–2PubMedGoogle Scholar
  202. Nielsen C, Martinez P (2003) Patterns of gene expression: homology or homocracy? Dev Genes Evol 213:149–154PubMedGoogle Scholar
  203. Nielsen MG, Popodi E, Minsuk S, Raff RA (2003) Evolutionary convergence in Otx expression in the pentameral adult rudiment in direct-developing sea urchins. Dev Genes Evol 213:73–82PubMedGoogle Scholar
  204. Okazaki K (1975) Spicule formation by isolated micromeres of the sea urchin embryo. Am Zool 15:567–581Google Scholar
  205. Oliveri P, Carrick DM, Davidson EH (2002) A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 246:209–228PubMedGoogle Scholar
  206. Oliveri P, Walton KD, Davidson EH, McClay DR (2006) Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development 133:4173–4181PubMedGoogle Scholar
  207. Olson RR, Cameron JL, Young CM (1993) Larval development (with observations on spawning) of the pencil urchin Phyllacanthus imperialis – a new intermediate larval form. Biol Bull 185:77–85Google Scholar
  208. Omori A, Akasaka K, Kurokawa D, Amemiya S (2011) Gene expression analysis of Six3, Pax6, and Otx in the early development of the stalked crinoid Metacrinus rotundus. Gene Expr Patterns GEP 11:48–56PubMedGoogle Scholar
  209. Ortiz-Pineda PA, Ramirez-Gomez F, Perez-Ortiz J, Gonzalez-Diaz S, Santiago-De Jesus F, Hernandez-Pasos J, Del Valle-Avila C, Rojas-Cartagena C, Suarez-Castillo EC, Tossas K, Mendez-Merced AT, Roig-Lopez JL, Ortiz-Zuazaga H, Garcia-Arraras JE (2009) Gene expression profiling of intestinal regeneration in the sea cucumber. BMC Genomics 10:262PubMedCentralPubMedGoogle Scholar
  210. Panganiban G, Irvine SM, Lowe C, Roehl H, Corley LS, Sherbon B, Grenier JK, Fallon JF, Kimble J, Walker M, Wray GA, Swalla BJ, Martindale MQ, Carroll SB (1997) The origin and evolution of animal appendages. Proc Natl Acad Sci U S A 94:5162–5166PubMedCentralPubMedGoogle Scholar
  211. Parsley RL (1991) Review of selected North American mitrate stylophorans (Homalozoa, Echinodermata). Bull Am Paleontol 100:5–54Google Scholar
  212. Patruno M, McGonnell I, Graham A, Beesley P, Carnevali MDC, Thorndyke M (2003) Anbmp2/4 is a new member of the transforming growth factor-beta superfamily isolated from a crinoid and involved in regeneration. Proc Natl Acad Sci U S A 270:1341–1347Google Scholar
  213. Pehrson JR, Cohen LH (1986) The fate of the small micromeres in sea urchin development. Dev Biol 113:522–526PubMedGoogle Scholar
  214. Peter IS, Davidson EH (2010) The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 340:188–199PubMedCentralPubMedGoogle Scholar
  215. Peter IS, Davidson EH (2011) A gene regulatory network controlling the embryonic specification of endoderm. Nature 474:635–639PubMedCentralPubMedGoogle Scholar
  216. Peterson KJ, Arenas-Mena C, Davidson EH (2000a) The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. Evol Dev 2:93–101PubMedGoogle Scholar
  217. Peterson KJ, Cameron RA, Davidson EH (2000b) Bilaterian origins: significance of new experimental observations. Dev Biol 219:1–17PubMedGoogle Scholar
  218. Pisani D, Feuda R, Peterson KJ, Smith AB (2012) Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. Mol Phylogenet Evol 62:27–34PubMedGoogle Scholar
  219. Poustka AJ, Kuhn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G (2007) A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 8:R85PubMedCentralPubMedGoogle Scholar
  220. Primus AE (2005) Regional specification in the early embryo of the brittle star Ophiopholis aculeata. Dev Biol 283:294–309PubMedGoogle Scholar
  221. Raff RA (1992) Direct-developing sea urchins and the evolutionary reorganization of early development. Bioessays 14:211–218PubMedGoogle Scholar
  222. Raff RA, Byrne M (2006) The active evolutionary lives of echinoderm larvae. Heredity 97:244–252PubMedGoogle Scholar
  223. Raff R, Popodi EM (1996) Evolutionary approaches to analyzing development. In: Ferraris JD, Palumbi SR (eds) Molecular zoology: advances, strategies and protocols. Wiley-Liss, New York, pp 245–265Google Scholar
  224. Raff RA, Smith MS (2009) Axis formation and the rapid evolutionary transformation of larval form. Curr Top Dev Biol 86(86):163–190PubMedGoogle Scholar
  225. Ramafofia C, Byrne M, Batteglene S (2003) Reproduction of the commercial sea cucumber Holothuria scabra in Solomon Islands. Mar Biol 142:281–288Google Scholar
  226. Ramofafia C, Byrne M, Battaglene S (2001) Reproductive biology of the intertidal sea cucumber Actinopyga mauritiana in the Solomon Islands. J Mar Biol Ass UK 81:523–531Google Scholar
  227. Ransick A, Davidson EH (2006) cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297:587–602PubMedGoogle Scholar
  228. Reynolds SD, Angerer LM, Palis J, Nasir A, Angerer RC (1992) Early mRNAs, spatially restricted along the animal-vegetal axis of sea urchin embryos, include one encoding a protein related to tolloid and BMP-1. Development 114:769–786PubMedGoogle Scholar
  229. Rizzo F, Fernandez-Serra M, Squarzoni P, Archimandritis A, Arnone MI (2006) Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev Biol 300:35–48PubMedGoogle Scholar
  230. Rojas-Cartagena C, Ortiz-Pineda P, Ramirez-Gomez F, Suarez-Castillo EC, Matos-Cruz V, Rodriguez C, Ortiz-Zuazaga H, Garcia-Arraras JE (2007) Distinct profiles of expressed sequence tags during intestinal regeneration in the sea cucumber Holothuria glaberrima. Physiol Genomics 31:203–215PubMedCentralPubMedGoogle Scholar
  231. Rottinger E, Croce J, Lhomond G, Besnardeau L, Gache C, Lepage T (2006) Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo. Development 133:4341–4353PubMedGoogle Scholar
  232. Rouse GW, Jermiin LS, Wilson NG, Eeckhaut I, Lanterbecq D, Oji T, Young CM, Browning T, Cisternas P, Helgen LE, Stuckey M, Messing CG (2013) Fixed, free, and fixed: the fickle phylogeny of extant Crinoidea (Echinodermata) and their permian-triassic origin. Mol Phylogenet Evol 66:161–181PubMedGoogle Scholar
  233. Ruffins SW, Ettensohn CA (1996) A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 122:253–263PubMedGoogle Scholar
  234. Ruta M (1999) Brief review of the stylophoran debate. Evol Dev 1:123–135PubMedGoogle Scholar
  235. Sanchez Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Gen 7:873–884Google Scholar
  236. Schuel H, Schuel R (1981) A rapid sodium-dependent block to polyspermy in sea urchin eggs. Dev Biol 87:249–258PubMedGoogle Scholar
  237. Scott LB, Lennarz WJ (1989) Structure of a major yolk glycoprotein and its processing pathway by limited proteolysis are conserved in echinoids. Dev Biol 132:91–102PubMedGoogle Scholar
  238. Selvakumaraswamy P, Byrne M (2006) Evolution of larval form in ophiuroids: insights from the metamorphic phenotype of Ophiothrix (Echinodermata: Ophiuroidea). Evol Dev 8:183–190PubMedGoogle Scholar
  239. Sewell MA, McEuen FS (2002) Phylum echinodermata: holothuroidea. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, San Diego, pp 513–530Google Scholar
  240. Shearer MC, Fawcett JW (2001) The astrocyte/meningeal cell interface – a barrier to successful nerve regeneration? Cell Tissue Res 305:267–273PubMedGoogle Scholar
  241. Sherwood DR, McClay DR (1999) LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126:1703–1713PubMedGoogle Scholar
  242. Shoguchi E, Harada Y, Numakunai T, Satoh N (2000) Expression of the Otx gene in the ciliary bands during sea cucumber embryogenesis. Genesis 27:58–63PubMedGoogle Scholar
  243. Sköld M, Rosenberg R (1996) Arm regeneration frequency in eight species of ophiuroidea (Echinodermata) from European sea areas. J Mar Res 35:353–362Google Scholar
  244. Sköld M, Loo L-O, Rosenberg R (1994) Production, dynamics and demography of an Amphiura filiformis population. Mar Ecol Prog Ser 103:81–90Google Scholar
  245. Sly BJ, Hazel JC, Popodi EM, Raff RA (2002) Patterns of gene expression in the developing adult sea urchin central nervous system reveal multiple domains and deep-seated neural pentamery. Evol Dev 4:189–204PubMedGoogle Scholar
  246. Sly BJ, Snoke MS, Raff RA (2003) Who came first-larvae or adults? origins of bilaterian metazoan larvae. Int J Dev Biol 47(7–8):623–32Google Scholar
  247. Smiley S (1986) Metamorphosis of Stichopus californicus (Echinodermata, Holothuroidea) and its phylogenetic implications. Biol Bull 171:611–631Google Scholar
  248. Smiley S, McEuen FS, Chafee C, Krishah S (1991) Echinodermata: holothuroidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, echinoderms and lophophorates, vol VI. Boxwood, Pacific Grove, pp 664–750Google Scholar
  249. Smith AB (1984) Classification of the echinodermata. Palaeontology 27:431–459Google Scholar
  250. Smith AB (1997) Echinoderm larvae and phylogeny. Ann Rev Ecol Syst 28:219–241Google Scholar
  251. Smith AB (2005) The pre-radial history of echinoderms. Geol J 40:255–280Google Scholar
  252. Smith AB (2008) Deuterostomes in a twist: the origins of a radical new body plan. Evol Dev 10:493–503PubMedGoogle Scholar
  253. Smith AB, Zamora S (2013) Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proc Natl Acad Sci U S A 280:1197Google Scholar
  254. Smith J, Kraemer E, Liu H, Theodoris C, Davidson E (2008a) A spatially dynamic cohort of regulatory genes in the endomesodermal gene network of the sea urchin embryo. Dev Biol 313:863–875PubMedCentralPubMedGoogle Scholar
  255. Smith MM, Cruz Smith L, Cameron RA, Urry LA (2008b) The larval stages of the sea urchin, Strongylocentrotus purpuratus. J Morphol 269:713–733PubMedGoogle Scholar
  256. Smith MS, Collins S, Raff RA (2009) Morphogenetic mechanisms of coelom formation in the direct-developing sea urchin Heliocidaris erythrogramma. Dev Genes Evol 219:21–29PubMedGoogle Scholar
  257. Smith AB, Zamora S, Alvaro JJ (2013) The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nat Commun 4:1385PubMedGoogle Scholar
  258. Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Belle R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Geneviere AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952PubMedGoogle Scholar
  259. Solek CM, Oliveri P, Loza-Coll M, Schrankel CS, Ho EC, Wang G, Rast JP (2013) An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes. Dev Biol 382:280–292PubMedGoogle Scholar
  260. Stears RL, Lennarz WJ (1997) Mapping sperm binding domains on the sea urchin egg receptor for sperm. Dev Biol 187:200–208PubMedGoogle Scholar
  261. Stohr S, O’Hara TD, Thuy B (2012) Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS One 7:e31940PubMedCentralPubMedGoogle Scholar
  262. Strathmann RR (1985) Feeding and nonfeeding larval development and life-history evolution in marine-invertebrates. Ann Rev Ecol Syst 16:339–361Google Scholar
  263. Su YH, Li E, Geiss GK, Longabaugh WJR, Kramer A, Davidson EH (2009) A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Dev Biol 329:410–421PubMedCentralPubMedGoogle Scholar
  264. Suarez-Castillo EC, Medina-Ortiz WE, Roig-Lopez JL, Garcia-Arraras JE (2004) Ependymin, a gene involved in regeneration and neuroplasticity in vertebrates, is overexpressed during regeneration in the echinoderm Holothuria glaberrima. Gene 334:133–143PubMedGoogle Scholar
  265. Summers RG, Stricker SA, Cameron RA (1993) Applications of confocal microscopy to studies of sea urchin embryogenesis. Methods Cell Biol 38:265–287PubMedGoogle Scholar
  266. Sumrall CD (1996) Late Paleozoic edrioasteroids (Echinodermata) from the North American Midcontinent. J Paleontol 70:969–985Google Scholar
  267. Sumrall CD, Wray GA (2007) Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology 33:149–163Google Scholar
  268. Sun L, Chen MY, Yang HS, Wang TM, Liu BZ, Shu C, Gardiner DM (2011) Large scale gene expression profiling during intestine and body wall regeneration in the sea cucumber Apostichopus japonicus. Comp Biochem Physiol Part D Genomics Proteomics 6:195–205PubMedGoogle Scholar
  269. Sun L, Yang H, Chen M, Ma D, Lin C (2013a) RNA-Seq reveals dynamic changes of gene expression in key stages of intestine regeneration in the sea cucumber Apostichopus japonicus. PLoS One 8:e69441PubMedCentralPubMedGoogle Scholar
  270. Sun LN, Yang HS, Chen MY, Xu DX (2013b) Cloning and expression analysis of Wnt6 and Hox6 during intestinal regeneration in the sea cucumber Apostichopus japonicus. Genet Mol Res 12:5321–5334PubMedGoogle Scholar
  271. Sweet HC, Gehring M, Ettensohn CA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129:1945–1955PubMedGoogle Scholar
  272. Takacs CM, Amore G, Oliveri P, Poustka AJ, Wang D, Burke RD, Peterson KJ (2004) Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo. Dev Biol 269:152–164PubMedGoogle Scholar
  273. Takata H, Kominami T (2004) Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos. Zoolog Sci 21:1025–1035PubMedGoogle Scholar
  274. Tamboline CR, Burke RD (1992) Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells. J Exp Zool 262:51–60PubMedGoogle Scholar
  275. Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185PubMedCentralPubMedGoogle Scholar
  276. Telford MJ, Lowe CJ, Cameron CB, Ortega-Martinez O, Aronowicz J, Oliveri P, Copley RR (2014) Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proc Biol Sci. doi: 10.1098/rspb.2014.0479 PubMedCentralPubMedGoogle Scholar
  277. Thorndyke MC, Candia Carnevali MD (2001) Regeneration neurohormones and growth factors in echinoderms. Can J Zool 79:1171–1208Google Scholar
  278. Thorndyke MC, Patruno M, Moss C, Beesley PW (2001) Cellular and molecular bases of arm regeneration in brittlestars. In: Barker M (ed) Echinoderms 2000: New Zealand. Balkema, Rotterdam, pp 323–326Google Scholar
  279. Thorndyke MC, Patruno M, Dewael Y, Dupont S, Mallefet J (2003) Regeneration in the ophiuroid Amphiura filiformis: cell biology, physiology and bioluminescence. In: Feral JP, David B (eds) Echinoderm research 2001. Swets and Zeitlinger, Lisse, pp 193–199Google Scholar
  280. Tu Q, Cameron RA, Worley KC, Gibbs RA, Davidson EH (2012) Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis. Genome Res 22:2079–2087PubMedCentralPubMedGoogle Scholar
  281. Turner RL (1998) The metameric echinoderm. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema, Rotterdam, p 89Google Scholar
  282. Ubaghs G (1975) Early paleozoic echinoderms. Ann Rev Earth Planet Sci 3:79–98Google Scholar
  283. Ullrich-Luter EM, Dupont S, Arboleda E, Hausen H, Arnone MI (2011) Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci U S A 108:8367–8372PubMedCentralPubMedGoogle Scholar
  284. Uthicke S, Schaffelke B, Byrne M (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24Google Scholar
  285. Vacquier VD, Moy GW (1977) Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. Proc Natl Acad Sci U S A 74:2456–2460PubMedCentralPubMedGoogle Scholar
  286. Vacquier VD, Tegner MJ, Epel D (1973) Protease released from sea urchin eggs at fertilization alters the vitelline layer and aids in preventing polyspermy. Exp Cell Res 80:111–119PubMedGoogle Scholar
  287. Vaughn R, Garnhart N, Garey JR, Thomas WK, Livingston BT (2012) Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii. EvoDevo 3:19PubMedCentralPubMedGoogle Scholar
  288. Vellutini BC, Migotto AE (2010) Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida). PLoS One 5:e9654PubMedCentralPubMedGoogle Scholar
  289. Vickery MC, Vickery MS, McClintock JB, Amsler CD (2001) Utilization of a novel deuterostome model for the study of regeneration genetics: molecular cloning of genes that are differentially expressed during early stages of larval sea star regeneration. Gene 262:73–80PubMedGoogle Scholar
  290. von Ubisch L (1913) Die Entwicklung von Strongylocentrotus lividus (Echinus microtuberculatus, Arbacia pustulosa). Zeit f wiss Zool 106:409–448Google Scholar
  291. Warner JF, Lyons DC, McClay DR (2012) Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult. PLoS Biol 10:e1001404PubMedCentralPubMedGoogle Scholar
  292. Wei Z, Yaguchi J, Yaguchi S, Angerer RC, Angerer LM (2009) The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Development 136:1179–1189PubMedCentralPubMedGoogle Scholar
  293. Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V (2013) The biology of the germ line in echinoderms. Mol Reprod Dev. doi: 10.1002/mrd.22223 Google Scholar
  294. Wilkie IC (1984) Variable tensility in echinoderm collagenous tissues: a review. Mar Behav Physiol 11:1–34Google Scholar
  295. Wilson KA, Andrews ME, Raff RA (2005) Dissociation of expression patterns of homeodomain transcription factors in the evolution of developmental mode in the sea urchins Heliocidaris tuberculata and H. erythrogramma. Evol Dev 7:401–415PubMedGoogle Scholar
  296. Winchell CJ, Valencia JE, Jacobs DK (2010) Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria. Dev Genes Evol 220:275–295PubMedCentralPubMedGoogle Scholar
  297. Wolpert L, Gustafson T (1961) Studies on the cellular basis of morphogenesis of the sea urchin embryo. The formation of the blastula. Exp Cell Res 25:374–382PubMedGoogle Scholar
  298. Woznica A, Haeussler M, Starobinska E, Jemmett J, Li Y, Mount D, Davidson B (2012) Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis. Dev Biol 368:127–139PubMedCentralPubMedGoogle Scholar
  299. Wray GA (1996) Parallel evolution of nonfeeding larvae in echinoids. Syst Biol 45:308–322Google Scholar
  300. Wygoda JA, Yang Y, Byrne M, Wray GA (2014) Transcriptomic analysis of the highly derived radial body plan of a sea urchin. Genome Biol Evol 6:964–973PubMedCentralPubMedGoogle Scholar
  301. Yankura KA, Martik ML, Jennings CK, Hinman VF (2010) Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms. BMC Biol 8:143PubMedCentralPubMedGoogle Scholar
  302. Yankura KA, Koechlein CS, Cryan AF, Cheatle A, Hinman VF (2013) Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning. Proc Natl Acad Sci U S A 110:8591–8596PubMedCentralPubMedGoogle Scholar
  303. Yoshimura K, Iketani T, Motokawa T (2012) Do regular sea urchins show preference in which part of the body they orient forward in their walk? Mar Biol 159:959–965Google Scholar
  304. Yuh CH, Brown CT, Livi CB, Rowen L, Clarke PJ, Davidson EH (2002) Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin. Dev Biol 246:148–161PubMedGoogle Scholar
  305. Zamora S, Rahman IA, Smith AB (2012) Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS One 7:e38296PubMedCentralPubMedGoogle Scholar
  306. Zamora S, Lefebvre B, Alvaro JJ, Clausen S, Elicki O, Fatka O, Jell P, Kouchinsky A, Lin J-P, Nardin E, Parsley R, Rozhnov S, Sprinkle J, Sumrall CD, Vizcaïno D, Smith AB (2013) Chapter 13 Cambrian echinoderm diversity and palaeobiogeography. In: Harper DAT, Servais T (eds) Early Palaeozoic Biogeography and Palaeogeography. Geological Society of London Memoirs, Bath, pp 157–171Google Scholar
  307. Zukor KA, Kent DT, Odelberg SJ (2011) Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts. Neural Dev 6:1PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Maria Ina Arnone
    • 1
  • Maria Byrne
    • 2
  • Pedro Martinez
    • 3
    • 4
    Email author
  1. 1.Stazione Zoologica Anton DohrnNapoliItaly
  2. 2.Schools of Medical and Biological SciencesUniversity of SydneySydneyAustralia
  3. 3.Departament de GenèticaUniversitat de BarcelonaBarcelonaSpain
  4. 4.ICREA (Institut Català de Recerca i Estudis Avancats)BarcelonaSpain

Personalised recommendations