Skip to main content

Mechanisms of Fish Sound Production

Part of the Animal Signals and Communication book series (ANISIGCOM,volume 4)

Abstract

Fishes have evolved multiple mechanisms for sound production, many of which utilize sonic muscles that vibrate the swimbladder or the rubbing of bony elements. Sonic muscles are among the fastest muscles in vertebrates and typically drive the swimbladder to produce one sound cycle per contraction. These muscles may be extrinsic , typically extending from the head to the swimbladder, or intrinsic , likely a more-derived condition, in which muscles attach exclusively to the bladder wall. Recently discovered in Ophidiiform fishes, slow muscles stretch the swimbladder and associated tendons, allowing sound production by rebound (cock and release). In glaucosomatids , fast muscles produce a weak sound followed by a louder one, again produced by rebound, which may reflect an intermediate in the evolution of slow to superfast sonic muscles. Historically, the swimbladder has been modeled as an underwater resonant bubble . We provide evidence for an alternative hypothesis, namely that bladder sounds are driven as a forced rather than a resonant response, thus accounting for broad tuning, rapid damping, and directionality of fish sounds. Cases of sounds that damp slowly, an indication of resonance, are associated with tendons or bones that continue to vibrate and hence drive multiple cycles of swimbladder sound. Stridulation sounds, best studied in catfishes and damselfishes, are produced, respectively, as a series of quick jerks causing rubbing of a ribbed process against a rough surface or rapid jaw closing mediated by a specialized tendon. A cladogram of sonic fishes suggests that fish sound production has arisen independently multiple times.

Keywords

  • Acoustic communication
  • Behavior
  • Evolution
  • Sound production
  • Striated muscle
  • Hearing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7091-1846-7_3
  • Chapter length: 50 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-7091-1846-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7

References

  • Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Empirical refinements applicable to the recording of fish sounds in small tanks. J Acoust Soc Am 112:3073–3082

    PubMed  Google Scholar 

  • Akster AH (1981) Ultrastructure of muscles fibres in head and axial muscles of the perch (Perca fluviatilis L.). Cell Tissue Res 219:111–131

    CAS  PubMed  Google Scholar 

  • Akster AH, Osse JWM (1978) Muscle fibre types in head muscles of the perch Perca fluviatilis (L), Teleostei. A histochemical and electromyographical study. Neth J Zool 28:94–110

    CAS  Google Scholar 

  • Alexander RM (1966) Physical aspects of swimbladder function. Biol Rev 41:141–176

    CAS  PubMed  Google Scholar 

  • Alexander RM (1981) The chordates. Cambridge University Press, Cambridge

    Google Scholar 

  • Amorim MCP, Vasconcelos RO (2008) Variability in the mating calls of the Lusitanian toadfish Halobatrachus didactylus: cues for potential individual recognition. J Fish Biol 73:1267–1283. doi:10.1111/j.1095-8649.2008.01974

    Google Scholar 

  • Amorim MCP, McCracken ML, Fine ML (2002) Metabolic costs of sound production in the oyster toadfish, Opsanus tau. Can J Zool 80:830–838

    Google Scholar 

  • Amorim MCP, Vasconcelos RO, Parreira B (2009) Variability in the sonic muscles of the Lusitanian toadfish (Halobatrachus didactylus): acoustic signals may reflect individual quality. Can J Zool 87:718–725

    Google Scholar 

  • Amorim MCP, Simoes JM, Mendonca N, Bandarra NM, Almada VC, Fonseca PJ (2010) Lusitanian toadfish song reflects male quality. J Exp Biol 213:2997–3004. doi:10.1242/jeb.044586

    PubMed  Google Scholar 

  • Appelt D, Shen V, Franzini-Armstrong C (1991) Quantitation of Ca ATPase, feet and mitochondria in superfast muscle fibres from the toadfish, Opsanus tau. J Muscle Res Cell Motil 12:543–552. doi:10.1007/bf01738442

    CAS  PubMed  Google Scholar 

  • Au WWL, Hastings MC (2008) Principles of marine bioacoustics. Springer, New York

    Google Scholar 

  • Barber SB, Mowbray HM (1956) Mechanism of sound production in the sculpin. Science 124:219–220

    CAS  PubMed  Google Scholar 

  • Barimo JF, Fine ML (1998) Relationship of swim-bladder shape to the directionality pattern of underwater sound in the oyster toadfish. Can J Zool 76:134–143

    Google Scholar 

  • Bass AH (1985) Sonic pathways in teleost fisher: a comparative HRP study. Brain Behav Evol 27:115–131

    CAS  PubMed  Google Scholar 

  • Bass AH, Chagnaud BP (2012) Shared developmental and evolutionary origins for neural basis of vocal–acoustic and pectoral–gestural signaling. Proc Natl Acad Sci 109:10677–10684. doi:10.1073/pnas.1201886109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bass AH, Marchaterre MA (1989) Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): sexual polymorphism in the ultrastructure of myofibrils. J Comp Neurol 286:141–153

    CAS  PubMed  Google Scholar 

  • Bass AH, Gilland EH, Baker R (2008) Evolutionary origins for social vocalization in a vertebrate hindbrain–spinal compartment. Science 321:417–421. doi:10.1126/science.1157632

    PubMed Central  CAS  PubMed  Google Scholar 

  • Batzler WE, Pickwell GV (1970) Resonant acoustic scattering from gasbladder fishes. In: Farquhar GB (ed) Proceedings of an international symposium on biological sound scattering in the ocean. U.S. Government Printing Office, Washington, DC, pp 168–179

    Google Scholar 

  • Bertucci F, Ruppé L, van Wassenbergh S, Compère P, Parmentier E (2014) New insights into the role of the pharyngeal jaw apparatus in the sound-producing mechanism of Haemulon flavolineatum (Haemulidae). J Exp Biol 217:3862–3869

    Google Scholar 

  • Betancur-R R et al. (2013) The tree of life and a new classification of bony fishes, edn 1. PLOS currents tree of life

    Google Scholar 

  • Birindelli JLO, Sousa LM, Sabaj Perez MH (2009) Morphology of the gas bladder in thorny catfishes (Siluriformes: Doradidae). Proc Acad Nat Sci Phila 158:261–296

    Google Scholar 

  • Borie A, Mok HK, Chao NL, Fine ML (2014) Spatiotemporal variability and sound characterization in Silver Croaker Plagioscion squamosissimus (Sciaenidae) in the Central Amazon. PLOS1 9:1–8

    Google Scholar 

  • Bosher B, Newton S, Fine M (2006) The spine of the channel catfish, Ictalurus punctatus, as an anti-predator adaptation: an experimental study. Ethology 112:188–195

    Google Scholar 

  • Boyle KS, Tricas TC (2010) Pulse sound generation, anterior swim bladder buckling and associated muscle activity in the pyramid butterflyfish (Hemitaurichthys polylepis). J Exp Biol 213:3881–3893. doi:10.1242/jeb.048710

  • Boyle KS, Tricas TC (2011) Sound production in the longnose butterflyfishes (genus Forcipiger): cranial kinematics, muscle activity and honest signals. J Exp Biol 214:3829–3842. doi:10.1242/jeb.062554

    PubMed  Google Scholar 

  • Boyle KS, Dewan AK, Tricas TC (2013) Fast drum strokes: novel and convergent features of sonic muscle ultrastructure, innervation, and motor neuron organization in the pyramid butterflyfish (Hemitaurichthys polylepis). J Morphol 247:377–394. doi:10.1002/jmor.20096

  • Bradbury J, Vehrencamp S (1998) Principles of animal communication. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Brantley R, Tseng J, Bass A (1993) The ontogeny of inter- and intrasexual vocal muscle dimorphisms in a sound producing fish. Brain Behav Evol 42:336–349

    CAS  PubMed  Google Scholar 

  • Breedlove SM, Arnold AP (1980) Hormone accumulation in a sexually dimorphic nucleus of the rat spinal cord. Science 210:564–566

    CAS  PubMed  Google Scholar 

  • Burkenroad MD (1930) Sound production in the Haemulidae. Copeia 1930:17–18

    Google Scholar 

  • Burkenroad MD (1931) Notes on the marine sound-producing fish of Louisiana. Copeia 1931:20–28

    Google Scholar 

  • Butler A, Saidel W (2000) Defining sameness: historical, biological, and generative homology. BioEssays 22:846–853

    CAS  PubMed  Google Scholar 

  • Carlson B, Bass A (2000) Sonic/vocal motor pathways in squirrelfish (Teleostei, Holocentridae). Brain Behav Evol 56:14–28

    CAS  PubMed  Google Scholar 

  • Casadevall M, Matallanas J, Carrasson M, Munoz M (1996) Morphometric, meristic and anatomical differences between Ophidion barbatum L., 1758 and O. rochei Muller, 1845 (Pisces, Ophidiidae). Publ Especiales Inst Esp Oceanogr 21:45–61

    Google Scholar 

  • Chagnaud BP, Baker R, Bass AH (2011) Vocalization frequency and duration are coded in separate hindbrain nuclei. Nat Commun 2:346

    PubMed Central  PubMed  Google Scholar 

  • Chagnaud BP, Zee MC, Baker R, Bass AH (2012) Innovations in motoneuron synchrony drive rapid temporal modulations in vertebrate acoustic signaling. J Neurophysiol 107:3528–3542. doi:10.1152/jn.00030.2012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chardon M (1968) Anatomie comparée de l’appareil de Weber et des structures connexes chez les Siluriformes. Ann Mus R Afr Centr 169:1–273

    Google Scholar 

  • Chen SF, Huang BQ, Chien YY (1998) Histochemical characteristics of sonic muscle fibers in Tigerperch, Terapon jarbua. Zool Stud 37:56–62

    CAS  Google Scholar 

  • Chiu K-H, Hsieh F-M, Chen Y-Y, Huang H-W, Shiea J, Mok H-K (2013) Parvalbumin characteristics in the sonic muscle of a freshwater ornamental grunting toadfish (Allenbatrachus grunniens). Fish Physiol Biochem 39:107–119. doi:10.1007/s10695-012-9683-4

    CAS  PubMed  Google Scholar 

  • Coffin AB, Zeddies DG, Fay RR et al (2014) Use of the swim bladder and lateral line in near-field sound source localization by fish. J Exp Biol 217:2078–2088

    Google Scholar 

  • Cohen M, Winn H (1967) Electrophysiological observations on hearing and sound production in the fish, Porichthys notatus. J Exp Biol 165:355–370

    CAS  Google Scholar 

  • Colleye O, Frederich B, Vandewalle P, Casadevall M, Parmentier E (2009) Agonistic sounds in the skunk clownfish Amphiprion akallopisos: size-related variation in acoustic features. J Fish Biol 75:908–916. doi:10.1111/j.1095-8649.2009.02316.x

    CAS  PubMed  Google Scholar 

  • Colleye O, Vandewalle P, Lanterbecq D, Lecchini D, Parmentier E (2011) Interspecific variation of calls in clownfishes: degree of similarity in closely related species. BMC Evol Biol 11:365

    PubMed Central  PubMed  Google Scholar 

  • Colleye O, Nakamura M, Frédérich B, Parmentier E (2012) Further insight into the sound-producing mechanism of clownfishes: what structure is involved in sound radiation? J Exp Biol 215:2192–2202. doi:10.1242/jeb.067124

    PubMed  Google Scholar 

  • Colson D, Patek S, Brainerd E, Lewis S (1998) Sound production during feeding in Hippocampus seahorses (Syngnathidae). Environ Biol Fishes 51:221–229. doi:10.1023/a:1007434714122

  • Connaughton MA (2004) Sound generation in the searobin (Prionotus carolinus), a fish with alternate sonic muscle contraction. J Exp Biol 207:1643–1654. doi:10.1242/jeb.00928

    PubMed  Google Scholar 

  • Connaughton MA, Taylor MH (1995) Seasonal and daily cycles in sound production associated with spawning in weakfish, Cynoscion regalis. Environ Biol Fishes 42:233–240

    Google Scholar 

  • Connaughton MA, Fine ML, Taylor MH (1997) The effect of seasonal hypertrophy and atrophy of fiber morphology, metabolic substrate concentration and sound characteristics of the weakfish sonic muscle. J Exp Biol 200:2449–2457

    CAS  PubMed  Google Scholar 

  • Connaughton MA, Fine ML, Taylor MH (2002) Weakfish sonic muscle: influence of size, temperature and season. J Exp Biol 205:2183–2188

    CAS  PubMed  Google Scholar 

  • Coombs S, Popper AN (1979) Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. J Comp Physiol A 132:203–207. doi:10.1007/bf00614491

    Google Scholar 

  • Courtenay W (1971) Sexual dimorphism of the sound producing mechanism of the striped cusk eel, Rissola marginata (Pisces: Ophidiidae). Copeia 2:259–268

    Google Scholar 

  • Crockford T, Johnston IA (1993) Developmental changes in the composition of myofibrillar proteins in the swimming muscles of Atlantic herring, Clupea harengus. Mar Biol 115:15–22. doi:10.1007/bf00349381

    CAS  Google Scholar 

  • De Jong K, Bouton N, Slabbekoorn H (2007) Azorean rock-pool blennies produce size-dependent calls in a courtship context. Anim Behav 74:1285–1292

    Google Scholar 

  • de Pinna MCC (1996) A phylogenetic analysis of the Asian catfish families Sisoridae, Akysidae, and Amblycipitidae, with a hypothesis on the relationships of the neotropical Aspredinidae (Teleostei, Ostariophysi). Fieldiana Zool 1996:1–83

    Google Scholar 

  • Demski LS, Gerald JW (1972) Sound production evoked by electrical stimulation of the brain in toadfish (Opsanus beta). Anim Behav 20:504–513

    Google Scholar 

  • Demski LS, Gerald JW (1974) Sound production and other behavioral effects of midbrain stimulation in the free-swimming toadfish, Opsanus beta. Brain Behav Evol 9:41–59

    CAS  PubMed  Google Scholar 

  • Demski LS, Gerald JW, Popper AN (1973) Central and peripheral mechanisms of teleost sound production. Am Zool 13:1141–1167

    Google Scholar 

  • Devincenti CV, Diaz AO, Goldenberg AL (2000) Characterization of the swimming muscle of the anchovy Engraulis anchoita (Hubbs and Martini 1935). Anat Histol Embryol 29:197–202

    CAS  PubMed  Google Scholar 

  • Eichelberg H (1976) The fine structure of the drum muscles of the tigerfish Therapon jarbua, as compared with the trunk musculature. Cell Tissue Res 174:453–463

    CAS  PubMed  Google Scholar 

  • Eichelberg H (1977) Fine structure of the drum muscles of the piranha (Serrasalminae, Characidae). Cell Tissue Res 185:547–555. doi:10.1007/bf00220658

    CAS  PubMed  Google Scholar 

  • Evans RR (1973) The swimbladder and associated structures in Western Atlantic sea robins (Triglidae). Copeia 1973:315–321

    Google Scholar 

  • Fänge R, Wittenberg JB (1958) The swimbladder of the toadfish (Opsanus tau L.). Biol Bull 115:172–179

    Google Scholar 

  • Fawcett DW, Revel JP (1961) The sarcoplasmic reticulum of a fast-acting fish muscle. J Biophys Biochem Cytol 10:89–109

    PubMed Central  PubMed  Google Scholar 

  • Feher J, Waybright T, Fine M (1998) Comparison of sarcoplasmic reticulum capabilities in toadfish (Opsanus tau) sonic muscle and rat fast twitch muscle. J Muscle Res Cell Motil 19:661–674. doi:10.1023/a:1005333215172

    CAS  PubMed  Google Scholar 

  • Feuillade C, Nero RW (1998) A visco-elastic swimbladder model for describing enhanced-frequency resonance scattering from fish. J Acoust Soc Am 103:3245–3255. doi:10.1121/1.423076

  • Fine ML (1978a) Geographical variation in sound production evoked by brain stimulation in the oyster toadfish. Naturwissenschaften 65:493. doi:10.1007/bf00702846

    Google Scholar 

  • Fine ML (1978b) Seasonal and geographical variation of the mating call of the oyster toadfish Opsanus tau L. Oecologia 36:45–57

    Google Scholar 

  • Fine ML (1997) Endocrinology of sound production in fishes. Mar Freshw Behav Physiol 29:23–45

    Google Scholar 

  • Fine ML (2012) Swimbladder sound production: the forced response versus the resonant bubble. Bioacoustics 21:5–7

    Google Scholar 

  • Fine ML, Ladich F (2003) Sound production, spine locking and related adaptations. In: Kapoor BG, Arratia G, Chardon M, Diogo R (eds) Catfishes. Science Publishers, Enfield, pp 248–290

    Google Scholar 

  • Fine ML, Lenhardt ML (1983) Shallow-water propagation of the toadfish mating call. Comp Biochem Physiol A Physiol 76:225–231 doi:10.1016/0300-9629(83)90319-5

  • Fine ML, Pennypacker KR (1988) Histochemical typing of sonic muscle from the oyster toadfish. Copeia 1988:130–134

    Google Scholar 

  • Fine ML, Winn HE, Joest L, Perkins PJ (1977a) Temporal aspects of calling behavior in the oyster toadfish, Opsanus tau. Fish Bull 75:871–874

    Google Scholar 

  • Fine ML, Winn HE, Olla BL (1977b) Communication in fishes. In: Sebeok T (ed) How animals communicate. Indiana University Press, Bloomington, pp 472–518

    Google Scholar 

  • Fine ML, Keefer D, Leichnetz GR (1982) Testosterone uptake in the brainstem of a sound-producing fish. Science 215:1265–1267

    CAS  PubMed  Google Scholar 

  • Fine ML, Economos D, Radtke R, McClung JR (1984) Ontogeny and sexual dimorphism of the sonic motor nucleus in the oyster toadfish. J Comp Neurol 225:105–110. doi:10.1002/cne.902250111

    CAS  PubMed  Google Scholar 

  • Fine M, Burns N, Harris T (1990) Ontogeny and sexual dimorphism of sonic muscle in the oyster toadfish. Can J Zool 68:1374–1381

    Google Scholar 

  • Fine ML, Bernard B, Harris TM (1993) Functional morphology of toadfish sonic muscle fibers: relationship to possible fiber division. Can J Zool 71:2262–2274. doi:10.1139/z93-318

  • Fine ML, McKnight JW Jr, Blem CR (1995) Effect of size and sex on buoyancy in the oyster toadfish. Mar Biol 123:401–409. doi:10.1007/bf00349218

    Google Scholar 

  • Fine ML, McElroy D, Rafi J, King CB, Loesser KE, Newton S (1996) Lateralization of pectoral stridulation sound production in the channel catfish. Physiol Behav 60:753–757. doi:10.1016/0031-9384(96)00092-3

    CAS  PubMed  Google Scholar 

  • Fine ML, Friel J, McElroy D, King C, Loesser K, Newton S (1997) Pectoral spine locking and sound production in the channel catfish Ictalurus punctatus. Copeia 1997:777–790

    Google Scholar 

  • Fine ML, King C, Friel J, Loesser K, Newton S (1999) Sound production and locking of the pectoral spine of the channel catfish. Am Fish Soc Symp 24:105–114

    Google Scholar 

  • Fine ML, Malloy KL, King CB, Mitchell SL, Cameron TM (2001) Movement and sound generation by toadfish swimbladder. J Comp Physiol A 187:371–379

    CAS  PubMed  Google Scholar 

  • Fine ML, Schrinel J, Cameron TM (2004) The effect of loading on disturbance sounds of the Atlantic croaker Micropogonius undulatus: air versus water. J Acoust Soc Am 116:1271–1275

    PubMed  Google Scholar 

  • Fine ML, Lin H, Nguyen BB, Rountree RA, Cameron TM, Parmentier E (2007) Functional morphology of the sonic apparatus in the fawn cusk-eel Lepophidium profundorum (Gill 1863). J Morphol 268:953–966. doi:10.1002/jmor.10551

    PubMed  Google Scholar 

  • Fine ML, King CB, Cameron TM (2009) Acoustical properties of the swimbladder in the oyster toadfish Opsanus tau. J Exp Biol 212:3542–3552. doi:10.1242/jeb.033423

    PubMed Central  PubMed  Google Scholar 

  • Fine ML et al (2011) A primer on functional morphology and behavioural ecology of the pectoral spine of the channel catfish. Am Fish Soc Symp 77:745–753

    Google Scholar 

  • Fine ML, Lahiri S, Sullivan ADH, Mayo M, Newton SH, Sismour EN (2014) Reduction of the pectoral spine and girdle in domesticated channel catfish is likely caused by changes in selection pressure. Evolution 68:2102–2107. doi:10.1111/evo.12379

    PubMed  Google Scholar 

  • Finger TE, Kalil K (1985) Organization of motoneuronal pools in the rostral spinal cord of the sea robin, Prionotus carolinus. J Comp Neurol 239:384–390

    CAS  PubMed  Google Scholar 

  • Fish MP (1953) The production of underwater sounds by the northern seahorse, Hippocampus hudsonius. Copeia 1953:98–99

    Google Scholar 

  • Fish MP (1954) The character and significance of sound production among fishes of the Western North Atlantic Ocean. Bull Bingham Oceanogr Col 14:1–109

    Google Scholar 

  • Fish JF (1972) The effect of sound playback on the toadfish. In: Winn HE, Olla BL (eds) Behavior of marine animals, vol 2. Plenum Press, New York, pp 386–434

    Google Scholar 

  • Fish MP, Mowbray HM (1970) Sounds of Western North Atlantic fishes. The Johns Hopkins Press, Baltimore

    Google Scholar 

  • Fletcher LB, Crawford JD (2001) Acoustic detection by sound-producing fishes (Mormyridae): the role of gas-filled tympanic bladders. J Exp Biol 204:175–183

    Google Scholar 

  • Focant B, Huriaux F, Vandewalle P, Castelli M, Goessens G (1992) Myosin, parvalbumin and myofibril expression in barbel (Barbus barbus L.) lateral white muscle during development. Fish Physiol Biochem 10:133–143. doi:10.1007/bf00004524

    CAS  PubMed  Google Scholar 

  • Focant B, Vandewalle P, Huriaux F (2003) Expression of myofibrillar proteins and parvalbumin isoforms during the development of a flatfish, the common sole Solea solea: comparison with the turbot Scophthalmus maximus. Comp Biochem Physiol Part B Biochem Mol Biol 135:493–502. doi:10.1016/S1096-4959(03)00116-7

  • Francis DTI, Foote KG (2003) Depth-dependent target strengths of gadoids by the boundary-element method. J Acoust Soc Am 114:3136–3146. doi:10.1121/1.1619982

  • Gainer H (1969) Multiple innervation of fish skeletal muscle. In: Kerkut GA (ed) Experiments in physiology and biochemistry, vol 2. Academic Press, New York, pp 191–208

    Google Scholar 

  • Gerday C (1982) Soluble calcium-binding proteins from fish and invertebrate muscle. Mol Physiol 2:63–87

    CAS  Google Scholar 

  • Gill T (1905) The life history of the sea-horses (hippocampids). Proc US Natl Mus 28:805–814

    Google Scholar 

  • Gilland E, Baker R (1993) Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. Acta Anat 148:110–123

    CAS  PubMed  Google Scholar 

  • Gkenas C, Malavasi S, Georgalas V, Leonardos ID, Torricelli P (2010) The reproductive behavior of Economidichthys pygmaeus: secondary loss of sound production within the sand goby group? Environ Biol Fishes 87:299–307

    Google Scholar 

  • Gray GA, Winn HE (1961) Reproductive ecology and sound production of the toadfish, Opsanus tau. Ecology 42:274–282

    Google Scholar 

  • Guest WC, Lasswell JL (1978) A note on courtship behavior and sound production of red drum. Copeia 1978:337–338

    Google Scholar 

  • Hamoir G, Focant B (1981) Proteinic differences between the sarcoplasmic reticulum of the superfast swimbladder and the fast skeletal muscles of the toadfish Opsanus tau. Mol Physiol 1:353–359

    CAS  Google Scholar 

  • Hamoir G, Gerardin-Otthiers N, Focant B (1980) Protein differentiation of the superfast swimbladder muscle of the toadfish Opsanus tau. J Mol Biol 143:155–160. doi:10.1016/0022-2836(80)90129-1

  • Harris GG (1964) Considerations on the physics of sound production by fishes. In: Tavolga WN (ed) Marine bio-acoustics, vol 1. Pergamon Press, New-York, pp 233–247

    Google Scholar 

  • Hawkins AD (1993) Underwater sound and fish behaviour. In: Pitcher TJ (ed) Behaviour of teleost fishes, 2nd edn. Chapman & Hall, London, pp 129–169

    Google Scholar 

  • Heyd A, Pfeiffer W (2000) Über die Lauterzeugung der Welse (Siluroidei, Ostariophysi, Teleostei) und ihren Zusammenhang mit der Phylogenese und der Schreckreaktion. Rev Suisse Zool 107:165–211

    Google Scholar 

  • Hirsch JE, Bigbee JW, Fine ML (1998) Continuous adult development of multiple innervation in toadfish sonic muscle. J Neurobiol 36:348–356

    CAS  PubMed  Google Scholar 

  • Horch K, Salmon M (1973) Adaptations to the acoustic environment by the squirrelfish Myripristis violaceus and M. pralinius. Mar Behav Physiol 2:121–139

    Google Scholar 

  • Howes G (1992) Notes on the anatomy and classification of Ophidiiform fishes with particular reference to the abyssal genus Acanthonus Günther, 1878. Bull Br Mus Nat Hist 58:95–131

    Google Scholar 

  • Hubbs CL, Hibbard CW (1951) Ictalurus lambda, a new catfish, based on a pectoral spine from the lower Pliocene of Kansas. Copeia 1951:8–14

    Google Scholar 

  • Huriaux F, Baras E, Vandewalle P, Focant B (2003) Expression of myofibrillar proteins and parvalbumin isoforms in white muscle of dorada during development. J Fish Biol 62:774–792. doi:10.1046/j.1095-8649.2003.00064.x

    CAS  Google Scholar 

  • Johnston CE, Johnson DL (2000a) Sound production during the spawning season in cavity-nesting darters of the subgenus Catonotus (Percidae: Etheostoma). Copeia 2000:475–481

    Google Scholar 

  • Johnston IA (1981) Structure and function of fish muscles. Symp Zool Soc Lond 48:71–113

    CAS  Google Scholar 

  • Johnston CE, Johnson DL (2000b) Sound production in Pimephales notatus (Rafinesque) (Cyprinidae). Copeia 2000:567–571

    Google Scholar 

  • Johnston C, Vives S (2003) Sound production in Codoma ornata (Girard) (Cyprinidae). Environ Biol Fishes 68:81–85. doi:10.1023/a:1026067913329

  • Johnston IA, Patterson S, Ward PS, Goldspink G (1974) The histochemical demonstration of myofibrillar adenosine triphosphatase activity in fish muscle. Can J Zool 52:871–877

    CAS  PubMed  Google Scholar 

  • Jordão JM, Fonseca PJ, Amorim MCP (2012) Chorusing behaviour in the Lusitanian toadfish: should I match my neighbours’ calling rate? Ethology 118:885–895. doi:10.1111/j.1439-0310.2012.02078.x

    Google Scholar 

  • Josephson R (2006) Comparative physiology of insect flight muscle. In: Nature’s versatile engine: insect flight muscle inside and out. Molecular biology intelligence unit. Springer, Berlin, pp 34–43. doi:10.1007/0-387-31213-7_3

  • Kaatz IM, Stewart DJ (1997) The evolutionary origin and functional divergence of sound production in catfishes: stridulation mechanisms. J Morphol 232:272

    Google Scholar 

  • Kaatz IM, Stewart DJ (2012) Bioacoustic variation of swimbladder disturbance sounds in neotropical doradoid catfishes (Siluriformes: Doradidae, Auchenipteridae): potential morphological correlates. Curr Zool 58:171–188

    Google Scholar 

  • Kaatz IM, Stewart DJ, Rice AN, Lobel PS (2010) Differences in pectoral fin spine morphology between vocal and silent clades of catfish (order Siluriformes): ecomorphological implications. Curr Zool 56:73–89

    Google Scholar 

  • Kastberger G (1981a) Economy of sound production in piranhas (Serrasalminae, Characidae): I. Functional properties of sonic muscles. Zool Jahrb Physiol 85:113–125

    Google Scholar 

  • Kastberger G (1981b) Economy of sound production in piranhas (Serrasalminae, Characidae): II Functional properties of sound emitter. Zool Jahrb Physiol 85:393–411

    Google Scholar 

  • Kasumyan AO (2008) Sounds and sound production in fishes. J Ichthyol 48:981–1030

    Google Scholar 

  • Kéver L, Boyle K, Dragicevic B, Dulcic J, Casadevall M, Parmentier E (2012a) Sexual dimorphism of sonic apparatus and extreme intersexual variation of sounds in Ophidion rochei (Ophidiidae): first evidence of a tight relationship between morphology and sound characteristics in Ophidiidae. Front Zool 9:34

    PubMed Central  PubMed  Google Scholar 

  • Kéver L, Boyle KS, Dragičević B, Dulčić J, Casadevall M, Parmentier E (2012b) Sexual dimorphism of sonic apparatus and extreme intersexual variation of sounds in Ophidion rochei (Ophidiidae): first evidence of a tight relationship between morphology and sound characteristics in Ophidiidae. Front Zool 9:1–16

    Google Scholar 

  • Kéver L, Boyle KS, Bolen G, Dragičević B, Dulčić J, Parmentier E (2014) Modifications in call characteristics and sonic apparatus morphology during puberty in Ophidion rochei (actinopterygii: Ophidiidae). J Morphol 275:650–660. doi:10.1002/jmor.20245

    PubMed  Google Scholar 

  • Klug GA, Leberer E, Leisner E, Simoneau J, Pette D (1988) Relationship between parvalbumin content and the speed of relaxation in chronically stimulated rabbit fast-twitch muscle. Pflugers Arch 411:126–131

    CAS  PubMed  Google Scholar 

  • Knight L, Ladich F (2014) Distress sounds of thorny catfishes emitted underwater and in air: characteristics and potential significance. J Exp Biol 217:4068–4078

    Google Scholar 

  • Korneliussen H, Dahl HA, Paulsen JE (1978) Histochemical definition of muscle fibre types in trunk musculature of a teleost fish (cod, Gadus morhua, L.). Histochem Cell Biol 55:1–16

    CAS  Google Scholar 

  • Kratochvil H (1978) Der Bau des Lautapparates vom Knurrenden Gurami (Trichopsis vittatus Cuvier & Valenciennes) (Anabantidae, Belontiidae). Zoomorphologie 91:91–99

    Google Scholar 

  • Kratochvil H (1985) Beiträge zur Lautbiologie der Anabantoidei—Bau, Funktion und Entwicklung von lauterzeugenden Systeme. Zool Jahrb Physiol 89:203–255

    Google Scholar 

  • Ladich F (1988) Sound production by the gudgeon, Gobio gobio L., a common European freshwater fish (Cyprinidae, Teleostei). J Fish Biol 32:707–715. doi:10.1111/j.1095-8649.1988.tb05411.x

    Google Scholar 

  • Ladich F (1997) Comparative analysis of swimbladder (drumming) and pectoral (stridulation) sounds in three families of catfishes. Bioacoustics 8:185–208

    Google Scholar 

  • Ladich F (2001) Sound-generating and -detecting motor system in catfish: design of swimbladder muscles in doradids and pimelodids. Anat Rec 263:297–306

    CAS  PubMed  Google Scholar 

  • Ladich F (2013) Effects of noise on sound detection and acoustic communication in fishes. In: Brumm H (ed) Animal communication and noise. Springer, Berlin, pp 65–90

    Google Scholar 

  • Ladich F (2014) Diversity in hearing in fishes: ecoacoustical, communicative, and developmental constraints. In: Köppl C, Manley GA, Popper AN, Fay RR (eds) Insights from comparative hearing research. Springer handbook of auditory research, vol 49. Springer, New York, pp 289–321

    Google Scholar 

  • Ladich F, Bass AH (1996) Sonic/vocal acousticolateralis pathways in teleost fishes: a transneuronal biocytin study in mochokid catfish. J Comp Neurol 374:493–505

    Google Scholar 

  • Ladich F, Bass AH (2005) Sonic motor pathways in piranhas with a reassessment of phylogenetic patterns of sonic mechanisms among teleosts. Brain Behav Evol 66:167–176

    PubMed  Google Scholar 

  • Ladich F, Fine ML (1994) Localization of swim bladder and pectoral motoneurons involved in sound production in pimelodid catfish. Brain Behav Evol 44:86–100

    CAS  PubMed  Google Scholar 

  • Ladich F, Fine M (2006) Sound-generating mechanisms in fishes: a unique diversty in vertebrates. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers, Enfield, pp 3–34

    Google Scholar 

  • Ladich F, Myrberg AAJ (2006) Agonistic behavior and acoustic communication. In: Ladich F, Collin S, Moller P, Kapoor B (eds) Communication in fishes. Science Publishers, Enfield, pp 122–148

    Google Scholar 

  • Ladich F, Wysocki LE (2003) How does tripus extirpation affect auditory sensitivity in goldfish? Hear Res 182:119–129

    PubMed  Google Scholar 

  • Ladich F, Bischof C, Schleinzer G, Fuchs A (1992) Intra- and interspecific differences in agonistic vocalization in croaking gouramis (Genus: Trichopsis, Anabantoidei, Teleostei). Bioacoustics 4:131–141

    Google Scholar 

  • Lagardère JP, Mariani A (2006) Spawning sounds in meagre Argyrosomus regius recorded in the Gironde estuary. Fr J Fish Biol 69:1697–1708

    Google Scholar 

  • Lagardère JP, Mallekh R, Mariani A (2004) Acoustic characteristics of two feeding modes used by brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss) and turbot (Scophthalmus maximus). Aquaculture 240:607–614

    Google Scholar 

  • Lechner W, Ladich F (2008) Size matters: diversity in swimbladders and Weberian ossicles affects hearing in catfishes. J Exp Biol 211:1681–1689

    PubMed  Google Scholar 

  • Lewis MK, Nahirney PC, Chen V, Adikari BB, Wright J, Bass AH, Wang K (2003) Concentric intermediate filament lattice links to specialized Z band-junctional complexes in sonic muscle fibers of the type I male midshipman fish. J Struct Biol 143:56–71

    Google Scholar 

  • Lindstedt SL, McGlothlin T, Percy E, Pifer J (1998) Task-specific design of skeletal muscle: balancing muscle structural composition. Comp Biochem Physiol Part B Biochem Mol Biol 120:35–40. doi:10.1016/S0305-0491(98)00021-2

  • Lobel PS (2001) Acoustic behaviour of cichlid fishes. J Aquaric Aquat Sci 9:167–186

    Google Scholar 

  • Lobel PS, Mann DA (1995) Spawning sounds of the damselfish, Dascyllus albisella (Pomacentridae), and relationship to male size. Bioacoustics 6:187–198

    Google Scholar 

  • Lobel PS, Kaatz I, Rice AN (2010) Acoustical behavior of reef fishes. In: Cole KS (ed) Reproduction and sexuality in marine fishes: patterns and processes. University of California Press, Berkeley, pp 307–387

    Google Scholar 

  • Locascio JV, Mann DA (2005) Effects of Hurricane Charley on fish chorusing. Biol LetT 1:362–365. doi:10.1098/rsbl.2005.0309

    PubMed Central  PubMed  Google Scholar 

  • Locascio JV, Mann DA (2011) Diel and seasonal timing of sound production by black drum (Pogonias cromis). Fish Bull 109:327–338

    Google Scholar 

  • Loesser KE, Rafi J, Fine ML (1997) Embryonic, juvenile, and adult development of the toadfish sonic muscle. Anat Rec 249:469–477

    CAS  PubMed  Google Scholar 

  • Longrie N, Van Wassenbergh S, Vandewalle P, Mauguit Q, Parmentier E (2009) Potential mechanism of sound production in Oreochromis niloticus (Cichlidae). J Exp Biol 212:3395–3402. doi:10.1242/jeb.032946

    PubMed  Google Scholar 

  • Luczkovich JJ, Sprague MW, Johnson SE, Pullinger RC (1999) Delimiting spawning areas of weakfish, Cynoscion regalis (family Sciaenidae) in Pamlico Sound, North Carolina using passive hydroacoustic surveys. Bioacoustics 10:143–160

    Google Scholar 

  • Lugli M (2008) Role of ambient noise as a selective factor for frequencies used in fish acoustic communication. Bioacoustics 17:40–42

    Google Scholar 

  • Lugli M (2010) Sounds of shallow water fishes: pitch within the quiet window of the habitat ambient noise. J Comp Physiol A 196:439–451. doi:10.1007/s00359-010-0528-2

    Google Scholar 

  • Lugli M, Fine ML (2003) Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams. J Acoust Soc Am 114:512–521

    CAS  PubMed  Google Scholar 

  • Lugli M, Pavan G, Torricelli P, Bobbio L (1995) Spawning vocalisations in male freshwater gobiids (Pisces, Gobiidae). Environ Biol Fishes 43:219–231

    Google Scholar 

  • Lugli M, Yan HY, Fine ML (2003) Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum. J Comp Physiol A 189:309–320

    CAS  Google Scholar 

  • Luther PK, Munro PMG, Squire JM (1995) Muscle ultrastructure in the teleost fish. Micron 26:431–459

    Google Scholar 

  • Mahajan CL (1963) Sound producing apparatus in an Indian catfish Sisor rhabdophorus Hamilton. J Linn Soc Lond Zool 43:721–724

    Google Scholar 

  • Malavasi S, Collatuzzo S, Torricelli P (2008) Interspecific variation of acoustic signals in Mediterranean gobies (Perciformes, Gobiidae): comparative analysis and evolutionary outlook. Biol J Linn Soc 93:763–778. doi:10.1111/j.1095-8312.2008.00947.x

    Google Scholar 

  • Mann DA (2006) Propagation of fish sounds. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers, Endfield, pp 107–120

    Google Scholar 

  • Mann DA, Jarvis SM (2004) Potential sound production by a deep-sea fish. J Acoust Soc Am 115:2331–2333

    PubMed  Google Scholar 

  • Mann D, Lobel P (1997) Propagation of damselfish (Pomacentridae) courtship sounds. J Acoust Soc Am 101:3783–3791

    Google Scholar 

  • Mann D, Bowers-Altman J, Rountree R (1997) Sounds produced by the striped cusk-eel Ophidion marginatum (Ophidiidae) during courtship and spawning. Copeia 1997:610–612

    Google Scholar 

  • Mann DA, Locascio JV, Coleman FC, Koenig CC (2009) Goliath grouper Epinephelus itajara sound production and movement patterns on aggregation sites. Endangered Species Res 7:229–236. doi:10.3354/esr00109

    Google Scholar 

  • Markl H (1971) Schallerzeugung bei Piranhas (Serrasalminae, Characidae). J Comp Physiol A 74:39–56. doi:10.1007/bf00297789

    Google Scholar 

  • Marshall NB (1962) The biology of sound-producing fishes. Symp Zool Soc Lond 7:45–60

    Google Scholar 

  • Marshall NB (1967) Sound-producing mechanisms and the biology of deep-sea fishes. In: Tavolga WN (ed) Marine bio-acoustics, vol 2. Pergamon, Oxford, pp 123–133

    Google Scholar 

  • McCartney BS, Stubbs AR (1970) Measurement of the target strength of fish in dorsal aspect, including swimbladder resonance. In: Farquhar GB (ed) Proceedings of an international symposium on biological sound scattering in the ocean. US government printing office, Washington, DC, pp 180–211

    Google Scholar 

  • McKibben JR, Bass AH (1998) Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish. J Acoust Soc Am 104:3520–3533

    CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB, Ishihara Y, Ingram JR (1994) Cytochemical and histological details of muscle fibres in the southern smelt Retropinna retropinna (Pisces; Galaxioidei). Zool Sci 11:55–62

    Google Scholar 

  • Miano JP, Loesser-Casey KE, Fine ML (2013) Description and scaling of pectoral muscles in ictalurid catfishes. J Morphol 274:467–477

    PubMed  Google Scholar 

  • Miles JG, Parsons MJG, McCauley RD, Paulus MCM, Siwabessey J (2012) In situ source levels of mulloway (Argyrosomus japonicus) calls. J Acoust Soc Amer 132:3559–3568

    Google Scholar 

  • Millot S, Vandewalle P, Parmentier E (2011) Sound production in red-bellied piranhas (Pygocentrus nattereri, Kner): an acoustical, behavioural and morphofunctional study. J Exp Biol 214:3613–3618. doi:10.1242/jeb.061218

    PubMed  Google Scholar 

  • Mitchell S, Poland J, Fine ML (2008) Does muscle fatigue limit advertisement calling in the oyster toadfish Opsanus tau? Anim Behav 76:1011–1016

    Google Scholar 

  • Mok HK, Gilmore RG (1983) Analysis of sound production in estuarine fish aggregations of Pogoniascromis, Bairdiella chrysoura, and Cynoscion neubulosus (Sciaenidae). Bull Inst Zool Acad Sin 22:157–186

    Google Scholar 

  • Mok HK, Parmentier E, Chiu KH, Tsai KE, Chiu PH, Fine ML (2011) An intermediate in the evolution of superfast sonic muscles. Frontiers in Zoology 8:1–8

    Google Scholar 

  • Mok HK, Yu HY, Ueng JP, Wei RC (2009) Characterization of sounds of the blackspotted croaker Protonibea diacanthus (Sciaenidae) and localization of its spawning sites in esturarine coastal waters of Taiwan. Zool Stud 48:325–333

    Google Scholar 

  • Moyes CD, Buck LT, Hochachka PW, Suarez RK (1989) Oxidative properties of carp red and white muscle. J Exp Biol 143:321–331

    CAS  PubMed  Google Scholar 

  • Moyes CD, Schulte PM, Hochachka PW (1992) Recovery metabolism of trout white muscle: role of mitochondria. Am J Physiol 262:295–304

    Google Scholar 

  • Munk WH (1974) Sound channel in an exponentially stratified ocean, with application to SOFAR. J Acoust Soc Am 55:220–226. doi:10.1121/1.1914492

  • Myrberg AA (1981) Sound communication and interception in fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 395–426

    Google Scholar 

  • Myrberg AA, Spires JY (1980) Hearing in damselfishes: an analysis of signal detection among closely related species. J Comp Physiol 140:135–144

    Google Scholar 

  • Myrberg A, Spanier E, Ha S (1978) Temporal patterning in acoustic communication. In: Reese ES, Lighter FJ (eds) Contrasts in behaviour. Wiley, New York, pp 137–177

    Google Scholar 

  • Myrberg AA, Ha SJ, Shamblott MJ (1993) The sounds of bicolor damselfish (Pomacentrus partitus): predictors of body size and a spectral basis for individual recognition and assessment. J Acoust Soc Am 94:3067–3070

    Google Scholar 

  • Nguyen TK, Lin H, Parmentier E, Fine ML (2008) Seasonal variation in sonic muscles in the fawn cusk-eel Lepophidium profundorum. Biol Lett 4:707–710. doi:10.1098/rsbl.2008.0383

  • Oliveira TPR, Ladich F, Abed-Navandi D, Souto AS, Rosa IL (2014) Sounds produced by the longsnout seahorse: a study of their structure and functions. J Zool 294:114–121

    Google Scholar 

  • Ono RD, Poss SG (1982) Structure and innervations of the swimbladder musculature in the weakfish, Cynoscion regalis (Teleostei: Sciaenidae). Can J Zool 60:1955–1967

    Google Scholar 

  • Onuki A, Somiya H (2007) Innervation of sonic muscles in teleosts: occipital versus spinal nerves. Brain Behav Evol 69:132–141

    PubMed  Google Scholar 

  • Papes S, Ladich F (2011) Effects of temperature on sound production and auditory abilities in the striped raphael catfish Platydoras armatulus (Family Doradidae). PLoS ONE 6:1–10

    Google Scholar 

  • Parmentier E, Diogo R (2006) Evolutionary trends of swimbladder sound mechanisms in some teleost fishes. In: Ladich F, Collin SP, Moller P, BG K (eds) Communication in fishes, vol 1. Science Publishers, Enfield, pp 45–70

    Google Scholar 

  • Parmentier E, Genotte V, Focant B, Goffinet G, Vandewalle P (2003a) Characterization of the primary sonic muscles in Carapus acus (Caparidae): a multidisciplinary approach. Proc R Soc Biol Sci Ser B 270:2301–2308

    CAS  Google Scholar 

  • Parmentier E, Vandewalle P, Lagardère JP (2003b) Sound-producing mechanisms and recordings in Carapini species (Teleostei, Pisces). J Comp Physiol A 189:283–292

    CAS  Google Scholar 

  • Parmentier E, Fine ML, Vandewalle P, Ducamp J-J, Lagardere J-P (2006a) Sound production in two carapids (Carapus acus and C. mourlani) and through the sea cucumber tegument. Acta Zool 87:113–119

    Google Scholar 

  • Parmentier E, Fontenelle N, Fine ML, Vandewalle P, Henrist C (2006b) Functional morphology of the sonic apparatus in Ophidion barbatum (Teleostei, Ophidiidae). J Morphol 267:1461–1468

    CAS  PubMed  Google Scholar 

  • Parmentier E, Lagardere J-P, Braquegnier J-B, Vandewalle P, Fine ML (2006c) Sound production mechanism in carapid fish: first example with a slow sonic muscle. J Exp Biol 209:2952–2960

    PubMed  Google Scholar 

  • Parmentier E, Colleye O, Fine M, Frederich B, Vandewalle P, Herrel A (2007) Sound production in the clownfish Amphiprion clarkii. Science 316:1006

    CAS  PubMed  Google Scholar 

  • Parmentier E, Compere P, Casadevall M, Fontenelle N, Cloots R, Henrist C (2008a) The rocker bone: a new kind of mineralised tissue? Cell Tissue Res 334:67–79

    CAS  PubMed  Google Scholar 

  • Parmentier E, Lagardère JP, Chancerelle Y, Dufrane D, Eeckhaut I (2008b) Variations in sound-producing mechanism in the pearlfish Carapini (Carapidae). J Zool 276:266–275. doi:10.1111/j.1469-7998.2008.00486.x

    Google Scholar 

  • Parmentier E, Lecchini D, Frederich B, Brie C, Mann D (2009) Sound production in four damselfish (Dascyllus) species: phyletic relationships? Biol J Linn Soc 97:928–940. doi:10.1111/j.1095-8312.2009.01260.x

    Google Scholar 

  • Parmentier E, Bouillac G, Dragičević B, Dulčić J, Fine M (2010a) Call properties and morphology of the sound-producing organ in Ophidion rochei (Ophidiidae). J Exp Biol 213:3230–3236. doi:10.1242/jeb.044701

    PubMed  Google Scholar 

  • Parmentier E, Bouillac G, Dragičević B, Dulčić J, Fine ML (2010b) Call properties and morphology of the sound-producing organ in Ophidion rochei (Ophidiidae). J Exp Biol 213:3230–3236

    PubMed  Google Scholar 

  • Parmentier E, Fabri G, Kaatz I, Decloux N, Planes S, Vandewalle P (2010c) Functional study of the pectoral spine stridulation mechanism in different mochokid catfishes. J Exp Biol 213:1107–1114. doi:10.1242/jeb.039461

    CAS  PubMed  Google Scholar 

  • Parmentier E, Boyle KS, Berten L, Brié C, Lecchini D (2011a) Sound production and mechanism in Heniochus chrysostomus (Chaetodontidae). J Exp Biol 214:2702–2708. doi:10.1242/jeb.056903

    PubMed  Google Scholar 

  • Parmentier E, Mann K, Mann D (2011b) Hearing and morphological specializations of the mojarra (Eucinostomus argenteus). J Exp Biol 214:2697–2701

    PubMed  Google Scholar 

  • Parmentier E, Vandewalle P, Brie C, Dinraths L, Lecchini D (2011c) Comparative study on sound production in different Holocentridae species. Front Zool 8:12

    Google Scholar 

  • Parmentier E, Kéver L, Boyle K, Corbisier Y-E, Sawelew L, Malavasi S (2013) Sound production mechanism in Gobius paganellus (Gobiidae). J Exp Biol 216:3189–3199. doi:10.1242/jeb.087205

    PubMed  Google Scholar 

  • Parmentier E, Tock J, Falguière JC, Beauchaud M (2014) Sound production in Sciaenops ocellatus: preliminary study for the development of acoustic cues in aquaculture. Aquaculture 432:204–211

    Google Scholar 

  • Patterson S, Johnston IA, Goldspink G (1975) A histochemical study of the lateral muscles of five teleost species. J Fish Biol 7:159–166

    Google Scholar 

  • Picculin M, Calcagno G, Sebastianutto L, Bonacito C, Codarin A, Costantini M, Ferrero EA (2012) Diagnostics of nocturnal calls of Sciaena umbra (L., fam. Sciaenidae) in a nearshore Miditerranean marine reserve. Bioacoustics iFirst:1–12

    Google Scholar 

  • Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hear Res 273:25–36. doi:10.1016/j.heares.2009.12.023

  • Ramcharitar J, Gannon D, Popper A (2006) Bioacoustics of fishes of the family Sciaenidae (croackers and drums). Trans Am Fish Soc 135:1409–1431

    Google Scholar 

  • Remage-Healey L, Nowacek DP, Bass AH (2006) Dolphin foraging sounds suppress calling and elevate stress hormone levels in a prey species, the Gulf toadfish. J Exp Biol 209:4444–4451. doi:10.1242/jeb.02525

    CAS  PubMed  Google Scholar 

  • Rice AN, Bass AH (2009) Novel vocal repertoire and paired swimbladders of the three-spined toadfish, Batrachomoeus trispinosus: insights into the diversity of the Batrachoididae. J Exp Biol 212:1377–1391. doi:10.1242/jeb.028506

    PubMed Central  PubMed  Google Scholar 

  • Rome LC (2006) Design and function of superfast muscles: new insights into the physiology of skeletal muscle. Annu Rev Physiol 68:193–221

    CAS  PubMed  Google Scholar 

  • Rome LC, Linstedt SL (1998) The quest for speed: muscles built for high-frequency contractions. News Physiol Sci 13:26–268

    Google Scholar 

  • Rome LC, Syme DA, Hollingworth S, Lindstedt S, Maylor SM (1996) The whistle and the rattle: the design of sound producing muscles. Proc Natl Acad Sci 93:8095–8100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rome LC et al (1999) Trading force for speed: why superfast crossbridge kinetics leads to superlow forces. Proc Natl Acad Sci 95:5826–5831

    Google Scholar 

  • Rosenthal GG, Lobel PS (2006) Communication. In: Sloman KA, Wilson RW, Balshine S (eds) Behaviour and physiology of fish, vol 24. Fish physiology. Elsevier, New York, pp 39–78

    Google Scholar 

  • Salmon M (1967) Acoustical behavior of the mempachi, Myripristis berndti, in Hawaii. Pac Sci 21:364–381

    Google Scholar 

  • Sand O, Hawkins AD (1973) Acoustic properties of the cod swimbladder. J Exp Biol 58:797–820

    Google Scholar 

  • Schachner G, Schaller F (1981) Schallerzeugung and Schallreaktionen beim Antennenwels (Mandim) Rhambdia sebae sebae. Zool Beitr 27:375–392

    Google Scholar 

  • Schaeffer P, Conley K, Lindstedt S (1996) Structural correlates of speed and endurance in skeletal muscle: the rattlesnake tailshaker muscle. J Exp Biol 199:351–358

    PubMed  Google Scholar 

  • Scholz K, Ladich F (2006) Sound production, hearing and possible interception under ambient noise conditions in the topmouth minnow Pseudorasbora parva. J Fish Biol 69:892–906. doi:10.1111/j.1095-8649.2006.01168.x

    Google Scholar 

  • Schulz-Mirbach T, Heß M, Metscher B, Ladich F (2013) A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microtomographic and three-dimensional histological study. BMC Biol 11:75

    PubMed Central  PubMed  Google Scholar 

  • Sismour EN, Nellis SC, Newton SH, Da Mays, Fine ML (2013) An experimental study of consumption of channel catfish Ictalurus punctatus by largemouth bass Micropterus salmoides when alternative prey are available. Copeia 2013:277–283. doi:10.1643/ce-12-052

    Google Scholar 

  • Sisneros JA, Forlano PM, Deitcher DL, Bass AH (2004) Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. Science 305:404–407

    CAS  PubMed  Google Scholar 

  • Skoglund C (1961) Functional analysis of swimbladder muscles engaged in sound production of the toadfish. J Biophys Biochem Cytol 10:187–200

    PubMed Central  CAS  PubMed  Google Scholar 

  • Somlyo AV, Shurman H, Somlyo AP (1977) Composition of sarcoplasmic reticulum in situ by electron probe X-ray microanalysis. Nature 268:556–558

    CAS  PubMed  Google Scholar 

  • Sörensen W (1895) Are the extrinsic muscles of the air-bladder in some Siluroidae and the “elastic spring” apparatus of others subordinate to the voluntary production of sounds? What is, according to our present knowledge, the function of the Weberian ossicles? J Anat Physiol 29:205–229, 399–423, 518–552

    Google Scholar 

  • Speares P, Johnston C (2011) Sound production in Etheostoma oophylax (Percidae) and call characteristics correlated to body size. Environ Biol Fishes 92:461–468

    Google Scholar 

  • Sprague MW (2000) The single sonic muscle twitch model for the sound-production mechanism in the weakfish. Cynoscion regalis J Acous Soc Am 108:2430–2437

    CAS  Google Scholar 

  • Sprague MW, Luczkovich JJ (2001) Do striped cusk-eels Ophidion marginatum (Ophidiidae) produce the “chatter” sound attribuated to weakfish Cynoscion regalis (Scianidae)? Copeia 2001:854–859

    Google Scholar 

  • Sprague MW, Luczkovich JJ, Pullinger RC, Johnson SE, Jenkins T, Daniel HJ (2000) Using spectral analysis to identify drumming sounds of some North Carolina fishes in the family Sciaenidae. J Elisha Mitchell Sci Soc 116:124–145

    Google Scholar 

  • Stiassny MLJ (1981) The phyletic status of the family Cichlidae (Pisces, Perciformes): a comparative anatomical investigation. Neth J Zool 31:275–314

    Google Scholar 

  • Stout JF (1963) The significance of sound production during the reproductive behaviour of Notropis analostanus (family cyprinidae). Anim Behav 11:83–92 doi:10.1016/0003-3472(63)90014-9

  • Taverne L, Aloulou-Triki A (1974) Étude anatomique, myologique et ostéologique du genre Synodontis Cuvier (Pisces: Siluriformes, Mochokidae). Annales du Museum Royal d’Afrique Centrale 210:1–69

    Google Scholar 

  • Tavolga WN (1964) Sonic characteristics and mechanisms in marine fishes. In: Tavolga WN (ed) Marine Bio-acoustics. Pergamon Press, Oxford, pp 195–211

    Google Scholar 

  • Tavolga WN (1971a) Acoustic orientation in the sea catfish, Galeichthys felis. Ann N Y Acad Sci 188:80–97. doi:10.1111/j.1749-6632.1971.tb13091.x

    CAS  PubMed  Google Scholar 

  • Tavolga WN (1971b) Sound production and detection. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. New York, pp 135–205

    Google Scholar 

  • Tavolga WN (1976) Acoustic obstacle detection in the sea catfish (Arius felis). In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam, pp 185–204

    Google Scholar 

  • Tavolga WN (1977) Mechanisms for directional hearing in the sea catfish (Arius felis). J Exp Biol 67:97–115

    CAS  PubMed  Google Scholar 

  • te Kronnie G, Tatarczuch L, van Raamsdonk W, Kilarski W (1983) Muscle fibre types in the myotome of stickleback, Gasterosteus aculeatus L.: a histochemical, immunohistochemical and ultrastructural study. J Fish Biol 22:303–316

    Google Scholar 

  • Tellechea JS, Martinzez C, Fine ML, Norbis W (2010a) Sound production in the whitemouth croaker and relationship between fish size and call characteristics. Env Biol Fish 89:163–172

    Google Scholar 

  • Tellechea JS, Norbis W, Olsson D, Fine ML (2010b) Calls of the black drum (Pogonius chromis: Sciaenidae): Geographical differences in sound production between Northern and Southern Hemisphere populations. J Exp Zool 313A:1–8

    Google Scholar 

  • Thorson RF, Fine ML (2002a) Crepuscular changes in emission rate and parameters of the boatwhistle advertisement call of the gulf toadfish Opsanus beta. Environ Biol Fish 63:321–331

    Google Scholar 

  • Thorson RF, Fine ML (2002b) Acoustic competition in the gulf toadfish Opsanus beta: acoustic tagging. J Acoust Soc Am 111:2302–2307

    PubMed  Google Scholar 

  • Tikunov B, Rome L (2009) Is high concentration of parvalbumin a requirement for superfast relaxation? J Muscle Res Cell Motil 30:57–65. doi:10.1007/s10974-009-9175-z

    CAS  PubMed  Google Scholar 

  • Tower RW (1908) The production of sound in the drumfishes, the searobin and the toadfish. Ann N Y Acad Sci 18:149–180

    Google Scholar 

  • Tracy HC (1911) The morphology of the swimbladder in teleosts. Ann N Y Acad Sci 38:600–606 and-638-649

    Google Scholar 

  • Tricas T, Kajiura S, Kosaki R (2006) Acoustic communication in territorial butterflyfish: test of the sound production hypothesis. J Exp Biol 209:4994–5004

    PubMed  Google Scholar 

  • Urick RJ (1975) Principles of underwater sound. McGraw-Hill, New York

    Google Scholar 

  • van Bergeijk WA (1964) Directional and nondirectional hearing in fish. In: Tavolga WN (ed) Marine bioacoustics. Pergamon Press, New York, pp 281–299

    Google Scholar 

  • Vance T (2000) Variability in stridulatory sound production in the channel catfish, Ictalurus punctatus. BIOS 71:79–84

    Google Scholar 

  • Vance TL, Hewson JM, Modla S, Connaughton MA (2002) Variability in sonic muscle size and innervation among three sciaenids: spot, Atlantic croaker, and weakfish. Copeia 2002:1137–1143

    Google Scholar 

  • Vasconcelos RO, Ladich F (2008) Development of vocalization, auditory sensitivity and acoustic communication in the Lusitanian toadfish Halobatrachus didactylus. J Exp Biol 211:502–509

    PubMed  Google Scholar 

  • Wall CC, Lembke C, Mann DA (2012) Shelf-scale mapping of sound production by fishes in the eastern Gulf of Mexico, using autonomous glider technology. Mar Ecol Prog Ser 449:55–64. doi:10.3354/meps09549

    Google Scholar 

  • Wall CC, Simard P, Lembke C, Mann DA (2013) Large-scale passive acoustic monitoring of fish sound production on the West Florida Shelf. Mar Ecol Prog Ser 484:173–188. doi:10.3354/meps10268

    Google Scholar 

  • Wall CC, Rountree RA, Pomerleau C, Juanes F (2014) An exploration for deep-sea fish sounds off Vancouver Island from the NEPTUNE Canada ocean observing system. Deep Sea Res Part I Oceanogr Res Pap 83:57–64. doi:10.1016/j.dsr.2013.09.004

  • Walsh PJ, Bedolla C, Mommsen TP (1987) Reexamination of metabolic potential in the toadfish sonic muscle. J Exp Zool 241:133–136. doi:10.1002/jez.1402410116

    CAS  PubMed  Google Scholar 

  • Walsh PJ, Mommsen TP, Bass AH (1995) Biochemical and molecular aspects of singing in Batrachoidid fishes. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, metabolic and adaptational biochemistry, vol IV. Elsevier, New York, pp 279–289

    Google Scholar 

  • Watkins WA (1967) The harmonic interval: fact or artifact in spectral analysis of pulse trains. In: Tavolga WN (ed) Marine bio-acoustics, vol 2. Pergamon Press, New York, pp 15–43

    Google Scholar 

  • Waybright TD, Kollenkirchen U, Fine ML (1990) Effect of size and sex on grunt production in the oyster toadfish. Abstr Soc Neurosci 16:578

    Google Scholar 

  • Weber M (1913) Die Fische der Siboga-Expedition. Siboga-Expeditie 32:1–710

    Google Scholar 

  • Weston D (1967) Sound propagation in the presence of bladder fish. In: Albers V (ed) Underwater acoustics, vol 2. Plenum, New York, pp 55–88

    Google Scholar 

  • Winn HE (1964) The biological significance of fish sounds. In: Tavolga WN (ed) Marine bio-acoustics. Pergamon Press, New York, pp 213–231

    Google Scholar 

  • Winn HE (1967) Vocal facilitation and the biological significance of toadfish sounds. In: Tavolga WN (ed) Marine bio-acoustics. Pergamon Press, New York, pp 283–304

    Google Scholar 

  • Winn HE (1972) Acoustic discrimination by the toadfish with comments on signal systems. In: Winn HE, Olla BL (eds) Behavior of Marine Animals: Current Perspectives in Research, Vol. 2. Vertebrates. Plenum Press, New York, pp. 361–385

    Google Scholar 

  • Winn HE, Marshall JA (1963) Sound producing organ of the squirrelfish Holocentrus rufus. Physiol Zool 36:34–44

    Google Scholar 

  • Winn HE, Stout JF (1960) Sound production by the satinfin shiner, Notropis analostanus and related fishes. Science 132:222–223

    CAS  PubMed  Google Scholar 

  • Winn HE, Marshall JA, Hazlett B (1964) Behavior, diel activities, and stimuli that elicit sound production and reactions to sounds in the longspine squirrelfish. Copeia 1964:413–425

    Google Scholar 

  • Yan HY (1998) Auditory role of the suprabranchial chamber in gourami fish. J Comp Physiol A 183:325–333. doi:10.1007/s003590050259

    CAS  PubMed  Google Scholar 

  • Yan HY, Fine ML, Horn NS, Colón WE (2000) Variability in the role of the gasbladder in fish audition. J Comp Physiol A 186:435–445. doi:10.1007/s003590050443

    CAS  PubMed  Google Scholar 

  • Yoshimoto M, Kikuchi K, Yamamoto N, Somiya H, Ito H (1999) Sonic motor nucleus and its connections with octaval nuclei of the medulla in a rockfish, Sebasticus marmoratus. Brain Behav Evol 54:183–204

    CAS  PubMed  Google Scholar 

  • Young IS, Rome LC (2001) Mutually exclusive muscle designs: the power output of the locomotory and sonic muscles of the oyster toadfish (Opsanus tau). Proc Roy Soc Lond Series B: Biol Sci 268:1965–1970. doi:10.1098/rspb.2001.1731

    CAS  Google Scholar 

  • Zelick R, Mann DA, Popper AN (1999) Acoustic communication in fishes and frogs. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp. 363–411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Fine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Fine, M.L., Parmentier, E. (2015). Mechanisms of Fish Sound Production. In: Ladich, F. (eds) Sound Communication in Fishes. Animal Signals and Communication, vol 4. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1846-7_3

Download citation