Skip to main content

Structure and Function of the mTOR Activator Rheb

  • Chapter
  • First Online:

Abstract

Ras homologue enriched in brain (Rheb) is a well-known activator of the mammalian target of rapamycin (mTOR) protein kinase. It is a highly conserved small GTPase protein that is ubiquitously expressed from yeast to mammals. Rheb is most similar to Rap and Ras GTPases; however, it bears amino acid substitutions to key conserved residues in the G1 box. Rheb possesses a C-terminal CaaX box motif that is modified by attachment of a farnesyl isoprenoid moiety that mediates localization to cellular endomembranes. Rheb has low intrinsic GTPase activity and exists in a highly activated state in cells relative to many other GTPases. Structures of Rheb revealed that the side chain of the canonical catalytic residue (Gln64, which corresponds to Ras Gln61) is buried in a hydrophobic pocket where it is not available for catalysis, and mutation of this residue has minimal effect on intrinsic GTP hydrolysis. Further, an interaction between Tyr35 and the nucleotide inhibits GTP hydrolysis, and mutation of this residue resulted in a tenfold increase in the intrinsic GTPase activity of Rheb. The protein product of the Tsc2 gene (hamartin) was identified as a GTPase activating protein (GAP) that inactivates Rheb-GTP by promoting GTP hydrolysis through an “asparagine thumb” mechanism similar to that of its homolog Rap1GAP. The existence and identity of a guanine nucleotide exchange factor (GEF) for Rheb remain unresolved. In yeasts, Rheb plays a role in regulating arginine uptake. In multicellular organisms from flies to mammals, activation of the (m)TOR signaling pathway by Rheb promotes protein synthesis, cell growth, and proliferation, although there is some debate about whether this occurs through a direct interaction or an indirect mechanism. mTOR is frequently hyperactivated in a wide variety of human cancers, and mTOR inhibitors have been approved for treatment of certain cancers. Rheb expression and activation are elevated in some tumours, and are implicated in carcinogenesis. Rheb has been reported to interact with a number of proteins, which implicate it in the regulation of additional cellular functions including apoptosis and autophagy. Rheb is essential for development, and its knockout in mice results in an embryonic lethal phenotype. This chapter will describe the structure and function of Rheb, its role in mTOR signaling and noncanonical functions, as well as its physiological importance in health and disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abankwa D, Gorfe AA, Hancock JF (2008a) Mechanisms of Ras membrane organization and signalling: Ras on a rocker. Cell Cycle 7(17):2667–2673

    PubMed  CAS  PubMed Central  Google Scholar 

  • Abankwa D, Hanzal-Bayer M, Ariotti N, Plowman SJ, Gorfe AA, Parton RG, McCammon JA, Hancock JF (2008b) A novel switch region regulates H-ras membrane orientation and signal output. EMBO J 27(5):727–735

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ahmadian MR, Zor T, Vogt D, Kabsch W, Selinger Z, Wittinghofer A, Scheffzek K (1999) Guanosine triphosphatase stimulation of oncogenic Ras mutants. Proc Natl Acad Sci USA 96(12):7065–7070

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aspuria PJ, Sato T, Tamanoi F (2007) The TSC/Rheb/TOR signaling pathway in fission yeast and mammalian cells: temperature sensitive and constitutive active mutants of TOR. Cell Cycle 6(14):1692–1695

    PubMed  CAS  Google Scholar 

  • Astrinidis A, Henske EP (2005) Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. Oncogene 24(50):7475–7481

    PubMed  CAS  Google Scholar 

  • Astrinidis A, Senapedis W, Coleman TR, Henske EP (2003) Cell cycle-regulated phosphorylation of hamartin, the product of the tuberous sclerosis complex 1 gene, by cyclin-dependent kinase 1/cyclin B. J Biol Chem 278(51):51372–51379

    PubMed  CAS  Google Scholar 

  • Au KS, Rodriguez JA, Finch JL, Volcik KA, Roach ES, Delgado MR, Rodriguez E Jr, Northrup H (1998) Germ-line mutational analysis of the TSC2 gene in 90 tuberous-sclerosis patients. Am J Hum Genet 62(2):286–294

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y, Jiang Y (2007) Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318(5852):977–980

    PubMed  CAS  Google Scholar 

  • Barbacid M (1987) ras genes. Annu Rev Biochem 56:779–827

    PubMed  CAS  Google Scholar 

  • Basso AD, Kirschmeier P, Bishop WR (2006) Lipid posttranslational modifications. Farnesyl transferase inhibitors. J Lipid Res 47(1):15–31

    PubMed  CAS  Google Scholar 

  • Benvenuto G, Li S, Brown SJ, Braverman R, Vass WC, Cheadle JP, Halley DJ, Sampson JR, Wienecke R, DeClue JE (2000) The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination. Oncogene 19(54):6306–6316

    PubMed  CAS  Google Scholar 

  • Berghaus C, Schwarten M, Heumann R, Stoll R (2007) Sequence-specific 1H, 13C, and 15N backbone assignment of the GTPase rRheb in its GDP-bound form. Biomol NMR Assign 1(1):45–47

    PubMed  CAS  Google Scholar 

  • Berndt N, Hamilton AD, Sebti SM (2011) Targeting protein prenylation for cancer therapy. Nat Rev Cancer 11(11):775–791

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4(5):335–348

    PubMed  CAS  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877

    PubMed  CAS  Google Scholar 

  • Brown HL, Kaun KR, Edgar BA (2012) The small GTPase Rheb affects central brain neuronal morphology and memory formation in Drosophila. PLoS One 7(9):e44888

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brtva TR, Drugan JK, Ghosh S, Terrell RS, Campbell-Burk S, Bell RM, Der CJ (1995) Two distinct Raf domains mediate interaction with Ras. J Biol Chem 270(17):9809–9812

    PubMed  CAS  Google Scholar 

  • Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18(23):2893–2904

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buerger C, DeVries B, Stambolic V (2006) Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun 344(3):869–880

    PubMed  CAS  Google Scholar 

  • Buller CL, Heilig CW, Brosius FC III (2011) GLUT1 enhances mTOR activity independently of TSC2 and AMPK. Am J Physiol Renal Physiol 301(3):F588–F596

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cales C, Hancock JF, Marshall CJ, Hall A (1988) The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature 332(6164):548–551

    PubMed  CAS  Google Scholar 

  • Campbell TB, Basu S, Hangoc G, Tao W, Broxmeyer HE (2009) Overexpression of Rheb2 enhances mouse hematopoietic progenitor cell growth while impairing stem cell repopulation. Blood 114(16):3392–3401

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cao M, Tan X, Jin W, Zheng H, Xu W, Rui Y, Li L, Cao J, Wu X, Cui G, Ke K, Gao Y (2013) Upregulation of Ras homolog enriched in the brain (Rheb) in lipopolysaccharide-induced neuroinflammation. Neurochem Int 62(4):406–417

    PubMed  CAS  Google Scholar 

  • Castro AF, Rebhun JF, Clark GJ, Quilliam LA (2003) Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 278(35):32493–32496

    PubMed  CAS  Google Scholar 

  • Castro AF, Rebhun JF, Quilliam LA (2005) Measuring Ras-family GTP levels in vivo–running hot and cold. Methods 37(2):190–196

    PubMed  CAS  Google Scholar 

  • Chakrabarti PP, Daumke O, Suveyzdis Y, Kotting C, Gerwert K, Wittinghofer A (2007) Insight into catalysis of a unique GTPase reaction by a combined biochemical and FTIR approach. J Mol Biol 367(4):983–995

    PubMed  CAS  Google Scholar 

  • Chakrabarti P, Anno T, Manning BD, Luo Z, Kandror KV (2008) The mammalian target of rapamycin complex 1 regulates leptin biosynthesis in adipocytes at the level of translation: the role of the 5'-untranslated region in the expression of leptin messenger ribonucleic acid. Mol Endocrinol 22(10):2260–2267

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chakrabarti P, English T, Shi J, Smas CM, Kandror KV (2010) Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 59(4):775–781

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen YX, Koch S, Uhlenbrock K, Weise K, Das D, Gremer L, Brunsveld L, Wittinghofer A, Winter R, Triola G, Waldmann H (2010) Synthesis of the Rheb and K-Ras4B GTPases. Angew Chem Int Ed Engl 49(35):6090–6095

    PubMed  CAS  Google Scholar 

  • Choi J, Chen J, Schreiber SL, Clardy J (1996) Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273(5272):239–242

    PubMed  CAS  Google Scholar 

  • Chong-Kopera H, Inoki K, Li Y, Zhu T, Garcia-Gonzalo FR, Rosa JL, Guan KL (2006) TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase. J Biol Chem 281(13):8313–8316

    PubMed  CAS  Google Scholar 

  • Clark GJ, Kinch MS, Rogers-Graham K, Sebti SM, Hamilton AD, Der CJ (1997) The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J Biol Chem 272(16):10608–10615

    PubMed  CAS  Google Scholar 

  • Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355(13):1345–1356

    PubMed  CAS  Google Scholar 

  • Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68(1):64–80

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dan HC, Sun M, Yang L, Feldman RI, Sui XM, Ou CC, Nellist M, Yeung RS, Halley DJ, Nicosia SV, Pledger WJ, Cheng JQ (2002) Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem 277(38):35364–35370

    PubMed  CAS  Google Scholar 

  • Daumke O, Weyand M, Chakrabarti PP, Vetter IR, Wittinghofer A (2004) The GTPase-activating protein Rap1GAP uses a catalytic asparagine. Nature 429(6988):197–201

    PubMed  CAS  Google Scholar 

  • Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23(6):744–755

    PubMed  CAS  Google Scholar 

  • de Rooij J, Bos JL (1997) Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14(5):623–625

    PubMed  Google Scholar 

  • Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12(4):295–303

    PubMed  CAS  PubMed Central  Google Scholar 

  • Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126(11):3477–3487

    PubMed  CAS  Google Scholar 

  • Der CJ, Finkel T, Cooper GM (1986) Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44(1):167–176

    PubMed  CAS  Google Scholar 

  • Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD (2012) TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47(4):535–546

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ding H, McDonald JS, Yun S, Schneider PA, Peterson KL, Flatten KS, Loegering DA, Oberg AL, Riska SM, Huang S, Sinicrope FA, Adjei AA, Karp JE, Meng XW, Kaufmann SH (2014) Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells. Haematologica 99(1):60–9

    PubMed  PubMed Central  Google Scholar 

  • Dong X, Yang B, Li Y, Zhong C, Ding J (2009) Molecular basis of the acceleration of the GDP-GTP exchange of human ras homolog enriched in brain by human translationally controlled tumor protein. J Biol Chem 284(35):23754–23764

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ehrkamp A, Herrmann C, Stoll R, Heumann R (2013) Ras and rheb signaling in survival and cell death. Cancers (Basel) 5(2):639–661

    CAS  Google Scholar 

  • Eisenberg S, Henis YI (2008) Interactions of Ras proteins with the plasma membrane and their roles in signaling. Cell Signal 20(1):31–39

    PubMed  CAS  Google Scholar 

  • Eom M, Han A, Yi SY, Shin JJ, Cui Y, Park KH (2008) RHEB expression in fibroadenomas of the breast. Pathol Int 58(4):226–232

    PubMed  CAS  Google Scholar 

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294(5548):1942–1945

    PubMed  CAS  Google Scholar 

  • Fingar DC, Blenis J (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23(18):3151–3171

    PubMed  CAS  Google Scholar 

  • Finlay GA, Malhowski AJ, Liu Y, Fanburg BL, Kwiatkowski DJ, Toksoz D (2007) Selective inhibition of growth of tuberous sclerosis complex 2 null cells by atorvastatin is associated with impaired Rheb and Rho GTPase function and reduced mTOR/S6 kinase activity. Cancer Res 67(20):9878–9886

    PubMed  CAS  Google Scholar 

  • Florio SK, Prusti RK, Beavo JA (1996) Solubilization of membrane-bound rod phosphodiesterase by the rod phosphodiesterase recombinant delta subunit. J Biol Chem 271(39):24036–24047

    PubMed  CAS  Google Scholar 

  • Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, Thomas G (2003) Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11(6):1457–1466

    PubMed  CAS  Google Scholar 

  • Gasmi-Seabrook GM, Marshall CB, Cheung M, Kim B, Wang F, Jang YJ, Mak TW, Stambolic V, Ikura M (2010) Real-time NMR study of guanine nucleotide exchange and activation of RhoA by PDZ-RhoGEF. J Biol Chem 285(8):5137–5145

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ge Y, Yoon MS, Chen J (2011) Raptor and Rheb negatively regulate skeletal myogenesis through suppression of insulin receptor substrate 1 (IRS1). J Biol Chem 286(41):35675–35682

    PubMed  CAS  PubMed Central  Google Scholar 

  • Geyer M, Schweins T, Herrmann C, Prisner T, Wittinghofer A, Kalbitzer HR (1996) Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP. Biochemistry 35(32):10308–10320

    PubMed  CAS  Google Scholar 

  • Geyer M, Assheuer R, Klebe C, Kuhlmann J, Becker J, Wittinghofer A, Kalbitzer HR (1999) Conformational states of the nuclear GTP-binding protein Ran and its complexes with the exchange factor RCC1 and the effector protein RanBP1. Biochemistry 38(35):11250–11260

    PubMed  CAS  Google Scholar 

  • Gideon P, John J, Frech M, Lautwein A, Clark R, Scheffler JE, Wittinghofer A (1992) Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Mol Cell Biol 12(5):2050–2056

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goody RS, Rak A, Alexandrov K (2005) The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cell Mol Life Sci 62(15):1657–1670

    PubMed  CAS  Google Scholar 

  • Goorden SM, Hoogeveen-Westerveld M, Cheng C, van Woerden GM, Mozaffari M, Post L, Duckers HJ, Nellist M, Elgersma Y (2011) Rheb is essential for murine development. Mol Cell Biol 31(8):1672–1678

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gorfe AA, Babakhani A, McCammon JA (2007a) H-ras protein in a bilayer: interaction and structure perturbation. J Am Chem Soc 129(40):12280–12286

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gorfe AA, Hanzal-Bayer M, Abankwa D, Hancock JF, McCammon JA (2007b) Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J Med Chem 50(4):674–684

    PubMed  CAS  Google Scholar 

  • Gremer L, Gilsbach B, Ahmadian MR, Wittinghofer A (2008) Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction. Biol Chem 389(9):1163–1171

    PubMed  CAS  Google Scholar 

  • Gromov PS, Madsen P, Tomerup N, Celis JE (1995) A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of rheb. FEBS Lett 377(2):221–226

    PubMed  CAS  Google Scholar 

  • Gronwald W, Huber F, Grunewald P, Sporner M, Wohlgemuth S, Herrmann C, Kalbitzer HR (2001) Solution structure of the Ras binding domain of the protein kinase Byr2 from Schizosaccharomyces pombe. Structure 9(11):1029–1041

    PubMed  CAS  Google Scholar 

  • Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT, Kuriyan J (2008) Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat Struct Mol Biol 15(5):452–461

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hall DJ, Grewal SS, de la Cruz AF, Edgar BA (2007) Rheb-TOR signaling promotes protein synthesis, but not glucose or amino acid import, in Drosophila. BMC Biol 5:10

    PubMed  PubMed Central  Google Scholar 

  • Hamada S, Hara K, Hamada T, Yasuda H, Moriyama H, Nakayama R, Nagata M, Yokono K (2009) Upregulation of the mammalian target of rapamycin complex 1 pathway by Ras homolog enriched in brain in pancreatic beta-cells leads to increased beta-cell mass and prevention of hyperglycemia. Diabetes 58(6):1321–1332

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hancock JF, Paterson H, Marshall CJ (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63(1):133–139

    PubMed  CAS  Google Scholar 

  • Hanzal-Bayer M, Renault L, Roversi P, Wittinghofer A, Hillig RC (2002) The complex of Arl2-GTP and PDE delta: from structure to function. EMBO J 21(9):2095–2106

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945

    PubMed  CAS  Google Scholar 

  • Hodges AK, Li S, Maynard J, Parry L, Braverman R, Cheadle JP, DeClue JE, Sampson JR (2001) Pathological mutations in TSC1 and TSC2 disrupt the interaction between hamartin and tuberin. Hum Mol Genet 10(25):2899–2905

    PubMed  CAS  Google Scholar 

  • Honjoh S, Yamamoto T, Uno M, Nishida E (2009) Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature 457(7230):726–730

    PubMed  CAS  Google Scholar 

  • Hoogeveen-Westerveld M, Wentink M, van den Heuvel D, Mozaffari M, Ekong R, Povey S, den Dunnen JT, Metcalfe K, Vallee S, Krueger S, Bergoffen J, Shashi V, Elmslie F, Kwiatkowski D, Sampson J, Vidales C, Dzarir J, Garcia-Planells J, Dies K, Maat-Kievit A, van den Ouweland A, Halley D, Nellist M (2011) Functional assessment of variants in the TSC1 and TSC2 genes identified in individuals with Tuberous Sclerosis Complex. Hum Mutat 32(4):424–435

    PubMed  CAS  Google Scholar 

  • Hoogeveen-Westerveld M, Ekong R, Povey S, Mayer K, Lannoy N, Elmslie F, Bebin M, Dies K, Thompson C, Sparagana SP, Davies P, van Eeghen AM, Thiele EA, van den Ouweland A, Halley D, Nellist M (2013) Functional assessment of TSC2 variants identified in individuals with tuberous sclerosis complex. Hum Mutat 34(1):167–175

    PubMed  CAS  Google Scholar 

  • Hsu YC, Chern JJ, Cai Y, Liu M, Choi KW (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445(7129):785–788

    PubMed  CAS  Google Scholar 

  • Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412(2):179–190

    PubMed  CAS  PubMed Central  Google Scholar 

  • Im E, von Lintig FC, Chen J, Zhuang S, Qui W, Chowdhury S, Worley PF, Boss GR, Pilz RB (2002) Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene 21(41):6356–6365

    PubMed  CAS  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657

    PubMed  CAS  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan KL (2003a) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17(15):1829–1834

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inoki K, Zhu T, Guan KL (2003b) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    PubMed  CAS  Google Scholar 

  • Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968

    PubMed  CAS  Google Scholar 

  • Ismail SA, Chen YX, Rusinova A, Chandra A, Bierbaum M, Gremer L, Triola G, Waldmann H, Bastiaens PI, Wittinghofer A (2011) Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat Chem Biol 7(12):942–949

    PubMed  CAS  Google Scholar 

  • Jiang H, Vogt PK (2008) Constitutively active Rheb induces oncogenic transformation. Oncogene 27:5729–5740

    PubMed  CAS  PubMed Central  Google Scholar 

  • John J, Frech M, Wittinghofer A (1988) Biochemical properties of Ha-ras encoded p21 mutants and mechanism of the autophosphorylation reaction. J Biol Chem 263(24):11792–11799

    PubMed  CAS  Google Scholar 

  • Jones AC, Shyamsundar MM, Thomas MW, Maynard J, Idziaszczyk S, Tomkins S, Sampson JR, Cheadle JP (1999) Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet 64(5):1305–1315

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kalbitzer HR, Spoerner M, Ganser P, Hozsa C, Kremer W (2009) Fundamental link between folding states and functional states of proteins. J Am Chem Soc 131(46):16714–16719

    PubMed  CAS  Google Scholar 

  • Kang YJ, Lu MK, Guan KL (2011) The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis. Cell Death Differ 18(1):133–144

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang SA, Pacold ME, Cervantes CL, Lim D, Lou HJ, Ottina K, Gray NS, Turk BE, Yaffe MB, Sabatini DM (2013) mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341(6144):1236566

    PubMed  PubMed Central  Google Scholar 

  • Karassek S, Berghaus C, Schwarten M, Goemans CG, Ohse N, Kock G, Jockers K, Neumann S, Gottfried S, Herrmann C, Heumann R, Stoll R (2010) Ras homolog enriched in brain (Rheb) enhances apoptotic signaling. J Biol Chem 285(44):33979–33991

    PubMed  CAS  PubMed Central  Google Scholar 

  • Karbowniczek M, Cash T, Cheung M, Robertson GP, Astrinidis A, Henske EP (2004) Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. J Biol Chem 279(29):29930–29937

    PubMed  CAS  Google Scholar 

  • Karbowniczek M, Robertson GP, Henske EP (2006) Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization. J Biol Chem 281(35):25447–25456

    PubMed  CAS  Google Scholar 

  • Karbowniczek M, Spittle CS, Morrison T, Wu H, Henske EP (2008) mTOR is activated in the majority of malignant melanomas. J Invest Dermatol 128(4):980–987

    PubMed  CAS  Google Scholar 

  • Kim HW, Ha SH, Lee MN, Huston E, Kim DH, Jang SK, Suh PG, Houslay MD, Ryu SH (2010) Cyclic AMP controls mTOR through regulation of the dynamic interaction between Rheb and phosphodiesterase 4D. Mol Cell Biol 30(22):5406–5420

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim IH, Lee MN, Ryu SH, Park JW (2011a) Nanoscale mapping and affinity constant measurement of signal-transducing proteins by atomic force microscopy. Anal Chem 83(5):1500–1503

    PubMed  CAS  Google Scholar 

  • Kim SR, Chen X, Oo TF, Kareva T, Yarygina O, Wang C, During M, Kholodilov N, Burke RE (2011b) Dopaminergic pathway reconstruction by Akt/Rheb-induced axon regeneration. Ann Neurol 70(1):110–120

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim SR, Kareva T, Yarygina O, Kholodilov N, Burke RE (2012) AAV transduction of dopamine neurons with constitutively active Rheb protects from neurodegeneration and mediates axon regrowth. Mol Ther 20(2):275–286

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kobayashi T, Shimizu Y, Terada N, Yamasaki T, Nakamura E, Toda Y, Nishiyama H, Kamoto T, Ogawa O, Inoue T (2010) Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation. Prostate 70(8):866–874

    PubMed  CAS  Google Scholar 

  • Krengel U, Schlichting I, Scherer A, Schumann R, Frech M, John J, Kabsch W, Pai EF, Wittinghofer A (1990) Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62(3):539–548

    PubMed  CAS  Google Scholar 

  • Kwiatkowski DJ (2003) Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther 2(5):471–476

    PubMed  CAS  Google Scholar 

  • Kwiatkowski DJ, Manning BD (2005) Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 14(Spec No. 2):R251–8

    PubMed  CAS  Google Scholar 

  • Lacher MD, Pincheira R, Zhu Z, Camoretti-Mercado B, Matli M, Warren RS, Castro AF (2010) Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Oncogene 29(50):6543–6556

    PubMed  CAS  Google Scholar 

  • Lacher MD, Pincheira RJ, Castro AF (2011) Consequences of interrupted Rheb-to-AMPK feedback signaling in tuberous sclerosis complex and cancer. Small GTPases 2(4):211–216

    PubMed  PubMed Central  Google Scholar 

  • Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol 19(22):R1046–R1052

    PubMed  CAS  PubMed Central  Google Scholar 

  • Laplante M, Sabatini DM (2013) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Google Scholar 

  • Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484):495–501

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, Sun HL, Li LY, Ping B, Huang WC, He X, Hung JY, Lai CC, Ding Q, Su JL, Yang JY, Sahin AA, Hortobagyi GN, Tsai FJ, Tsai CH, Hung MC (2007) IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130(3):440–455

    PubMed  CAS  Google Scholar 

  • Lee MN, Ha SH, Kim J, Koh A, Lee CS, Kim JH, Jeon H, Kim DH, Suh PG, Ryu SH (2009) Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol 29(14):3991–4001

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee MN, Koh A, Park D, Jang JH, Kwak D, Jeon H, Kim J, Choi EJ, Jeong H, Suh PG, Ryu SH (2013) Deacetylated alphabeta-tubulin acts as a positive regulator of Rheb GTPase through increasing its GTP-loading. Cell Signal 25(2):539–551

    PubMed  CAS  Google Scholar 

  • Li Y, Corradetti MN, Inoki K, Guan KL (2004a) TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci 29(1):32–38

    PubMed  Google Scholar 

  • Li Y, Inoki K, Guan KL (2004b) Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol Cell Biol 24(18):7965–7975

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Wang Y, Kim E, Beemiller P, Wang CY, Swanson J, You M, Guan KL (2007) Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 282(49):35803–35813

    PubMed  CAS  Google Scholar 

  • Liao J, Shima F, Araki M, Ye M, Muraoka S, Sugimoto T, Kawamura M, Yamamoto N, Tamura A, Kataoka T (2008) Two conformational states of Ras GTPase exhibit differential GTP-binding kinetics. Biochem Biophys Res Commun 369(2):327–332

    PubMed  CAS  Google Scholar 

  • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15(8):702–713

    PubMed  CAS  Google Scholar 

  • Long X, Lin Y, Ortiz-Vega S, Busch S, Avruch J (2007) The Rheb switch 2 segment is critical for signaling to target of rapamycin complex 1. J Biol Chem 282(25):18542–18551

    PubMed  CAS  PubMed Central  Google Scholar 

  • Long D, Marshall CB, Bouvignies G, Mazhab-Jafari MT, Smith MJ, Ikura M, Kay LE (2013) A Comparative CEST NMR Study of Slow Conformational Dynamics of Small GTPases Complexed with GTP and GTP Analogues. Angew Chem Int Ed Engl 52:10771–10774. doi:10.1002/anie.201305434

    PubMed  CAS  Google Scholar 

  • Lu ZH, Shvartsman MB, Lee AY, Shao JM, Murray MM, Kladney RD, Fan D, Krajewski S, Chiang GG, Mills GB, Arbeit JM (2010) Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer Res 70(8):3287–3298

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121(2):179–193

    PubMed  CAS  Google Scholar 

  • Ma D, Bai X, Zou H, Lai Y, Jiang Y (2010) Rheb GTPase controls apoptosis by regulating interaction of FKBP38 with Bcl-2 and Bcl-XL. J Biol Chem 285(12):8621–8627

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mach KE, Furge KA, Albright CF (2000) Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation. Genetics 155(2):611–622

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maeurer C, Holland S, Pierre S, Potstada W, Scholich K (2009) Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM. Cell Signal 21(2):293–300

    PubMed  CAS  Google Scholar 

  • Maheshwar MM, Cheadle JP, Jones AC, Myring J, Fryer AE, Harris PC, Sampson JR (1997) The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum Mol Genet 6(11):1991–1996

    PubMed  CAS  Google Scholar 

  • Manning BD, Cantley LC (2003) Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 28(11):573–576

    PubMed  CAS  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10(1):151–162

    PubMed  CAS  Google Scholar 

  • Marshall CB, Ho J, Buerger C, Plevin MJ, Li G-Y, Li Z, Ikura M, Stambolic V (2009) Characterization of the intrinsic and TSC2-GAP-regulated GTPase activity of Rheb by real-time NMR. Sci Signal 2(55):ra3

    PubMed  Google Scholar 

  • Marshall CB, Meiri D, Smith MJ, Mazhab-Jafari MT, Gasmi-Seabrook GM, Rottapel R, Stambolic V, Ikura M (2012) Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts. Methods 57(4):473–485

    PubMed  CAS  Google Scholar 

  • Maruta H, Holden J, Sizeland A, D’Abaco G (1991) The residues of Ras and Rap proteins that determine their GAP specificities. J Biol Chem 266(18):11661–11668

    PubMed  CAS  Google Scholar 

  • Matsumoto S, Bandyopadhyay A, Kwiatkowski DJ, Maitra U, Matsumoto T (2002) Role of the Tsc1-Tsc2 complex in signaling and transport across the cell membrane in the fission yeast Schizosaccharomyces pombe. Genetics 161(3):1053–1063

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D, Ludlam MJ, Bowman KK, Wu J, Giannetti AM, Starovasnik MA, Mellman I, Jackson PK, Rudolph J, Wang W, Fang G (2012) Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA 109(14):5299–5304

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mavrakis KJ, Zhu H, Silva RL, Mills JR, Teruya-Feldstein J, Lowe SW, Tam W, Pelletier J, Wendel HG (2008) Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev 22(16):2178–2188

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mazhab-Jafari MT, Marshall CB, Smith M, Gasmi-Seabrook GM, Stambolic V, Rottapel R, Neel BG, Ikura M (2010) Real-time NMR study of three small GTPases reveals that fluorescent 2'(3')-O-(N-methylanthraniloyl)-tagged nucleotides alter hydrolysis and exchange kinetics. J Biol Chem 285(8):5132–5136

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mazhab-Jafari MT, Marshall CB, Ishiyama N, Stambolic V, Ikura M (2012) A non-canonical autoinhibitory mechanism underlies the slow GTP hydrolysis by the mTOR activator Rheb. Structure 20(9):1528–1539

    PubMed  CAS  Google Scholar 

  • Mazhab-Jafari MT, Marshall CB, Stathopulos PB, Kobashigawa Y, Stambolic V, Kay LE, Inagaki F, Ikura M (2013) Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. J Am Chem Soc 135(9):3367–3370

    PubMed  CAS  Google Scholar 

  • Mazhab-Jafari MT, Marshall CB, Ho J, Ishiyama N, Stambolic V, Ikura M (2014) Structure-guided mutation of the conserved G3-box glycine in Rheb generates a constitutively activated regulator of mTOR. J Biol Chem 289(18):12195–12201

    PubMed  CAS  Google Scholar 

  • Meiri D, Marshall CB, Greeve MA, Kim B, Balan M, Suarez F, Wu C, Larose J, Fine N, Ikura M, Rottapel R (2012) Mechanistic insight into the microtubule and actin cytoskeleton coupling through dynein-dependent RhoGEF inhibition. Mol Cell 45(5):642–655

    PubMed  CAS  Google Scholar 

  • Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C, Obre E, Goorden S, Priault M, Elgersma Y, Rezvani HR, Rossignol R, Benard G (2013) Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 17(5):719–730

    PubMed  CAS  Google Scholar 

  • Mizuki N, Kimura M, Ohno S, Miyata S, Sato M, Ando H, Ishihara M, Goto K, Watanabe S, Yamazaki M, Ono A, Taguchi S, Okumura K, Nogami M, Taguchi T, Ando A, Inoko H (1996) Isolation of cDNA and genomic clones of a human Ras-related GTP-binding protein gene and its chromosomal localization to the long arm of chromosome 7, 7q36. Genomics 34(1):114–118

    PubMed  CAS  Google Scholar 

  • Murai T, Nakase Y, Fukuda K, Chikashige Y, Tsutsumi C, Hiraoka Y, Matsumoto T (2009) Distinctive responses to nitrogen starvation in the dominant active mutants of the fission yeast Rheb GTPase. Genetics 183(2):517–527

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nancy V, Callebaut I, El Marjou A, de Gunzburg J (2002) The delta subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases. J Biol Chem 277(17):15076–15084

    PubMed  CAS  Google Scholar 

  • Nardella C, Chen Z, Salmena L, Carracedo A, Alimonti A, Egia A, Carver B, Gerald W, Cordon-Cardo C, Pandolfi PP (2008) Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev 22(16):2172–2177

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nellist M, Verhaaf B, Goedbloed MA, Reuser AJ, van den Ouweland AM, Halley DJ (2001) TSC2 missense mutations inhibit tuberin phosphorylation and prevent formation of the tuberin-hamartin complex. Hum Mol Genet 10(25):2889–2898

    PubMed  CAS  Google Scholar 

  • Neuman NA, Henske EP (2011) Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis. EMBO Mol Med 3(4):189–200

    PubMed  CAS  PubMed Central  Google Scholar 

  • Noonan DJ, Lou D, Griffith N, Vanaman TC (2002) A calmodulin binding site in the tuberous sclerosis 2 gene product is essential for regulation of transcription events and is altered by mutations linked to tuberous sclerosis and lymphangioleiomyomatosis. Arch Biochem Biophys 398(1):132–140

    PubMed  CAS  Google Scholar 

  • Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF, Williams RL (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103(6):931–943

    PubMed  CAS  Google Scholar 

  • Parkhitko CA, Favorova CO, Henske EP (2011) Rabin8 Protein Interacts with GTPase Rheb and Inhibits Phosphorylation of Ser235/Ser236 in Small Ribosomal Subunit Protein S6. Acta Nat 3(3):71–76

    Google Scholar 

  • Patel PH, Thapar N, Guo L, Martinez M, Maris J, Gau CL, Lengyel JA, Tamanoi F (2003) Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J Cell Sci 116(Pt 17):3601–3610

    PubMed  CAS  Google Scholar 

  • Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N (2006) mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 94(2):195–199

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72(10):2457–2467

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rasenick MM, Donati RJ, Popova JS, Yu JZ (2004) Tubulin as a regulator of G-protein signaling. Methods Enzymol 390:389–403

    PubMed  CAS  Google Scholar 

  • Rehmann H, Bruning M, Berghaus C, Schwarten M, Kohler K, Stocker H, Stoll R, Zwartkruis FJ, Wittinghofer A (2008) Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS Lett 582(20):3005–3010

    PubMed  CAS  Google Scholar 

  • Ren XD, Kiosses WB, Schwartz MA (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18(3):578–585

    PubMed  CAS  PubMed Central  Google Scholar 

  • Renault L, Nassar N, Vetter I, Becker J, Klebe C, Roth M, Wittinghofer A (1998) The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392(6671):97–101

    PubMed  CAS  Google Scholar 

  • Reuther GW, Der CJ (2000) The Ras branch of small GTPases: Ras family members don’t fall far from the tree. Curr Opin Cell Biol 12(2):157–165

    PubMed  CAS  Google Scholar 

  • Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307(5716):1746–1752

    PubMed  CAS  Google Scholar 

  • Rosner M, Hanneder M, Siegel N, Valli A, Hengstschlager M (2008) The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutat Res 658(3):234–246

    PubMed  CAS  Google Scholar 

  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101(37):13489–13494

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6(9):729–734

    PubMed  CAS  Google Scholar 

  • Sato T, Nakashima A, Guo L, Tamanoi F (2009) Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 284(19):12783–12791

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5(6):566–571

    PubMed  CAS  Google Scholar 

  • Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, Wittinghofer A (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277(5324):333–338

    PubMed  CAS  Google Scholar 

  • Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M, Condorelli G, Sadoshima J (2012) Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 125(9):1134–1146

    PubMed  CAS  PubMed Central  Google Scholar 

  • Scrima A, Thomas C, Deaconescu D, Wittinghofer A (2008) The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues. EMBO J 27(7):1145–1153

    PubMed  CAS  PubMed Central  Google Scholar 

  • Seabra MC (1998) Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal 10(3):167–172

    PubMed  CAS  Google Scholar 

  • Seeburg PH, Colby WW, Capon DJ, Goeddel DV, Levinson AD (1984) Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature 312(5989):71–75

    PubMed  CAS  Google Scholar 

  • Seo G, Kim SK, Byun YJ, Oh E, Jeong SW, Chae GT, Lee SB (2011) Hydrogen peroxide induces Beclin 1-independent autophagic cell death by suppressing the mTOR pathway via promoting the ubiquitination and degradation of Rheb in GSH-depleted RAW 264.7 cells. Free Radic Res 45(4):389–399

    PubMed  CAS  Google Scholar 

  • Shima F, Yoshikawa Y, Ye M, Araki M, Matsumoto S, Liao J, Hu L, Sugimoto T, Ijiri Y, Takeda A, Nishiyama Y, Sato C, Muraoka S, Tamura A, Osoda T, Tsuda K, Miyakawa T, Fukunishi H, Shimada J, Kumasaka T, Yamamoto M, Kataoka T (2013) In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc Natl Acad Sci USA 110(20):8182–8187

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith MJ, Ikura M (2014) Integrated RAS signaling defined by parallel NMR detection of effectors and regulators. Nat Chem Biol 10(3):223–230. doi:10.1038/nchembio.1435

    PubMed  CAS  Google Scholar 

  • Smith MJ, Neel BG, Ikura M (2013) NMR-based functional profiling of RASopathies and oncogenic RAS mutations. Proc Natl Acad Sci USA 110(12):4574–4579

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spoerner M, Herrmann C, Vetter IR, Kalbitzer HR, Wittinghofer A (2001) Dynamic properties of the Ras switch I region and its importance for binding to effectors. Proc Natl Acad Sci USA 98(9):4944–4949

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spoerner M, Wittinghofer A, Kalbitzer HR (2004) Perturbation of the conformational equilibria in Ras by selective mutations as studied by 31P NMR spectroscopy. FEBS Lett 578(3):305–310

    PubMed  CAS  Google Scholar 

  • Spoerner M, Nuehs A, Ganser P, Herrmann C, Wittinghofer A, Kalbitzer HR (2005) Conformational states of Ras complexed with the GTP analogue GppNHp or GppCH2p: implications for the interaction with effector proteins. Biochemistry 44(6):2225–2236

    PubMed  CAS  Google Scholar 

  • Spoerner M, Nuehs A, Herrmann C, Steiner G, Kalbitzer HR (2007) Slow conformational dynamics of the guanine nucleotide-binding protein Ras complexed with the GTP analogue GTPgammaS. FEBS J 274(6):1419–1433

    PubMed  CAS  Google Scholar 

  • Spoerner M, Hozsa C, Poetzl JA, Reiss K, Ganser P, Geyer M, Kalbitzer HR (2010) Conformational states of human rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis. J Biol Chem 285(51):39768–39778

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sprang SR (1997) G protein mechanisms: insights from structural analysis. Annu Rev Biochem 66:639–678

    PubMed  CAS  Google Scholar 

  • Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P, Breuer S, Thomas G, Hafen E (2003) Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 5(6):559–565

    PubMed  CAS  Google Scholar 

  • Stofega M, DerMardirossian C, Bokoch GM (2006) Affinity-based assay of Rho guanosine triphosphatase activation. Methods Mol Biol 332:269–279

    PubMed  CAS  Google Scholar 

  • Sucher NJ, Yu E, Chan SF, Miri M, Lee BJ, Xiao B, Worley PF, Jensen FE (2010) Association of the small GTPase Rheb with the NMDA receptor subunit NR3A. Neurosignals 18(4):203–209

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun Y, Fang Y, Yoon MS, Zhang C, Roccio M, Zwartkruis FJ, Armstrong M, Brown HA, Chen J (2008) Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci USA 105(24):8286–8291

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed Engl 51(25):6140–6143

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tabancay AP Jr, Gau CL, Machado IM, Uhlmann EJ, Gutmann DH, Guo L, Tamanoi F (2003) Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6K. J Biol Chem 278(41):39921–39930

    PubMed  CAS  Google Scholar 

  • Takahashi K, Nakagawa M, Young SG, Yamanaka S (2005) Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway. J Biol Chem 280(38):32768–32774

    PubMed  CAS  Google Scholar 

  • Tamai T, Yamaguchi O, Hikoso S, Takeda T, Taneike M, Oka T, Oyabu J, Murakawa T, Nakayama H, Uno Y, Horie K, Nishida K, Sonenberg N, Shah AM, Takeda J, Komuro I, Otsu K (2013) Rheb (Ras homologue enriched in brain)-dependent mammalian target of rapamycin complex 1 (mTORC1) activation becomes indispensable for cardiac hypertrophic growth after early postnatal period. J Biol Chem 288(14):10176–10187

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13(15):1259–1268

    PubMed  CAS  Google Scholar 

  • Tee AR, Blenis J, Proud CG (2005) Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1. FEBS Lett 579(21):4763–4768

    PubMed  CAS  Google Scholar 

  • Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol 8(8):701–704

    PubMed  CAS  Google Scholar 

  • Uhlenbrock K, Weiwad M, Wetzker R, Fischer G, Wittinghofer A, Rubio I (2009) Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway. FEBS Lett 583(6):965–970

    PubMed  CAS  Google Scholar 

  • Urano J, Tabancay AP, Yang W, Tamanoi F (2000) The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake. J Biol Chem 275(15):11198–11206

    PubMed  CAS  Google Scholar 

  • Urano J, Comiso MJ, Guo L, Aspuria PJ, Deniskin R, Tabancay AP Jr, Kato-Stankiewicz J, Tamanoi F (2005) Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol Microbiol 58(4):1074–1086

    PubMed  CAS  Google Scholar 

  • van Slegtenhorst M, Nellist M, Nagelkerken B, Cheadle J, Snell R, van den Ouweland A, Reuser A, Sampson J, Halley D, van der Sluijs P (1998) Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 7(6):1053–1057

    PubMed  Google Scholar 

  • van Slegtenhorst M, Carr E, Stoyanova R, Kruger WD, Henske EP (2004) Tsc1+ and tsc2+ regulate arginine uptake and metabolism in Schizosaccharomyces pombe. J Biol Chem 279(13):12706–12713

    PubMed  Google Scholar 

  • Vilella-Bach M, Nuzzi P, Fang Y, Chen J (1999) The FKBP12-rapamycin-binding domain is required for FKBP12-rapamycin-associated protein kinase activity and G1 progression. J Biol Chem 274(7):4266–4272

    PubMed  CAS  Google Scholar 

  • Wander SA, Hennessy BT, Slingerland JM (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 121(4):1231–1241

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang X, Fonseca BD, Tang H, Liu R, Elia A, Clemens MJ, Bommer UA, Proud CG (2008a) Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 283(45):30482–30492

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Y, Huang BP, Luciani DS, Wang X, Johnson JD, Proud CG (2008b) Rheb activates protein synthesis and growth in adult rat ventricular cardiomyocytes. J Mol Cell Cardiol 45(6):812–820

    PubMed  CAS  Google Scholar 

  • Wang J, Yang K, Zhou L, Minhaowu, Wu Y, Zhu M, Lai X, Chen T, Feng L, Li M, Huang C, Zhong Q, Huang X (2013) MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog 9(10):e1003697

    PubMed  PubMed Central  Google Scholar 

  • Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK (1997) K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272(22):14459–14464

    PubMed  CAS  Google Scholar 

  • Wittinghofer A, Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971

    PubMed  CAS  Google Scholar 

  • Wright LP, Philips MR (2006) Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res 47(5):883–891

    PubMed  CAS  Google Scholar 

  • Wu X, Cao Y, Nie J, Liu H, Lu S, Hu X, Zhu J, Zhao X, Chen J, Chen X, Yang Z, Li X (2013) Genetic and pharmacological inhibition of Rheb1-mTORC1 signaling exerts cardioprotection against adverse cardiac remodeling in mice. Am J Pathol 182(6):2005–2014

    PubMed  CAS  Google Scholar 

  • Xie J, Ponuwei GA, Moore CE, Willars GB, Tee AR, Herbert TP (2011) cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity. Cell Signal 23(12):1927–1935

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, Nathans D, Worley PF (1994) rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 269(23):16333–16339

    PubMed  CAS  Google Scholar 

  • Yamasaki K, Shirouzu M, Muto Y, Fujita-Yoshigaki J, Koide H, Ito Y, Kawai G, Hattori S, Yokoyama S, Nishimura S et al (1994) Site-directed mutagenesis, fluorescence, and two-dimensional NMR studies on microenvironments of effector region aromatic residues of human c-Ha-Ras protein. Biochemistry 33(1):65–73

    PubMed  CAS  Google Scholar 

  • Yan L, Findlay GM, Jones R, Procter J, Cao Y, Lamb RF (2006) Hyperactivation of mammalian target of rapamycin (mTOR) signaling by a gain-of-function mutant of the Rheb GTPase. J Biol Chem 281(29):19793–19797

    PubMed  CAS  Google Scholar 

  • Yee WM, Worley PF (1997) Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol Cell Biol 17(2):921–933

    PubMed  CAS  PubMed Central  Google Scholar 

  • York B, Lou D, Panettieri RA Jr, Krymskaya VP, Vanaman TC, Noonan DJ (2005) Cross-talk between tuberin, calmodulin, and estrogen signaling pathways. FASEB J 19(9):1202–1204

    PubMed  CAS  Google Scholar 

  • York B, Lou D, Noonan DJ (2006) Tuberin nuclear localization can be regulated by phosphorylation of its carboxyl terminus. Mol Cancer Res 4(11):885–897

    PubMed  CAS  Google Scholar 

  • Yu J, Henske EP (2006) Estrogen-induced activation of mammalian target of rapamycin is mediated via tuberin and the small GTPase Ras homologue enriched in brain. Cancer Res 66(19):9461–9466

    PubMed  CAS  Google Scholar 

  • Yu Y, Li S, Xu X, Li Y, Guan K, Arnold E, Ding J (2005) Structural basis for the unique biological function of small GTPase RHEB. J Biol Chem 280(17):17093–17100

    PubMed  CAS  Google Scholar 

  • Yuan J, Shan Y, Chen X, Tang W, Luo K, Ni J, Wan B, Yu L (2005) Identification and characterization of RHEBL1, a novel member of Ras family, which activates transcriptional activities of NF-kappa B. Mol Biol Rep 32(4):205–214

    PubMed  CAS  Google Scholar 

  • Zaytseva YY, Valentino JD, Gulhati P, Evers BM (2012) mTOR inhibitors in cancer therapy. Cancer Lett 319(1):1–7

    PubMed  CAS  Google Scholar 

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5(6):578–581

    PubMed  CAS  Google Scholar 

  • Zheng M, Wang YH, Wu XN, Wu SQ, Lu BJ, Dong MQ, Zhang H, Sun P, Lin SC, Guan KL, Han J (2011) Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol 13(3):263–272

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou X, Ikenoue T, Chen X, Li L, Inoki K, Guan KL (2009) Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy. Proc Natl Acad Sci USA 106(22):8923–8928

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M, Hahn SA, Triola G, Wittinghofer A, Bastiaens PI, Waldmann H (2013) Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling. Nature 497(7451):638–642

    PubMed  CAS  Google Scholar 

  • Zou J, Zhou L, Du XX, Ji Y, Xu J, Tian J, Jiang W, Zou Y, Yu S, Gan L, Luo M, Yang Q, Cui Y, Yang W, Xia X, Chen M, Zhao X, Shen Y, Chen PY, Worley PF, Xiao B (2011) Rheb1 is required for mTORC1 and myelination in postnatal brain development. Dev Cell 20(1):97–108

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

M.I. holds a Canada Research Chair. Supported by the Cancer Research Society (Canada) and Canadian Cancer Society Research Institute (Grant # 2010-700494).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher B. Marshall or Mitsuhiko Ikura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Marshall, C.B., Mazhab-Jafari, M.T., Stambolic, V., Ikura, M. (2014). Structure and Function of the mTOR Activator Rheb. In: Wittinghofer, A. (eds) Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1806-1_13

Download citation

Publish with us

Policies and ethics