Skip to main content

Mouse Models of RAS-Induced Tumors and Developmental Disorders

  • Chapter
  • First Online:
Ras Superfamily Small G Proteins: Biology and Mechanisms 1
  • 1347 Accesses

Abstract

RAS oncogenes have been implicated in about one quarter of all human tumors including some of the cancers with worse prognosis such as lung adenocarcinoma, colorectal carcinoma, pancreatic ductal adenocarcinoma, and metastatic melanoma. In spite of the significant amount of knowledge accumulated over the last three decades regarding the molecular mechanisms by which RAS oncogenes induce malignant transformation, to date there are no efficacious therapies to selectively treat tumors carrying RAS mutations. One of the shortcomings in RAS research has been the lack of suitable experimental systems to study how RAS oncogenes induce cancer in an in vivo setting. The advent of sophisticated gene-targeting technologies are now making it possible to design mouse models of cancer that faithfully recapitulate the anatomo-pathological changes characteristic of those human tumors induced by RAS oncogenes. More recently, germline mutations in the three RAS loci have been found to be responsible for a series of developmental disorders known as RASopathies. Modeling these syndromes in mice should also help to understand the molecular events responsible for the developmental defects present in these human patients. This chapter summarizes those genetically engineered mouse models more frequently utilized to study RAS-induced tumors and developmental defects in an experimental setting. These mouse models should provide valuable experimental tools to identify molecular targets whose inhibition may open therapeutic avenues in the clinic, in a not too distant future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann J, Frutschi M, Kaloulis K, McKee T, Trumpp A, Beermann F (2005) Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res 65:4005–4011

    Article  PubMed  CAS  Google Scholar 

  • Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston MS, DePinho RA (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112–3126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H, Tanaka Y, Filocamo M, Kato K, Suzuki Y, Kure S, Matsubara Y (2005) Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 37:1038–1040

    Article  PubMed  CAS  Google Scholar 

  • Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, Feng B, Brennan C, Weissleder R, Mahmood U et al (2006) Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 103:5947–5952

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bennecke M, Kriegl L, Bajbouj M, Retzlaff K, Robine S, Jung A, Arkan MC, Kirchner T, Greten FR (2010) Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell 18:135–146

    Article  PubMed  CAS  Google Scholar 

  • Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J, Le Beau MM, Jacks TE, Shannon KM (2004) Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 101:597–602

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brembeck FH, Schreiber FS, Deramaudt TB, Craig L, Rhoades B, Swain G, Grippo P, Stoffers DA, Silberg DG, Rustgi AK (2003) The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res 63:2005–2009

    PubMed  CAS  Google Scholar 

  • Broome Powell M, Gause PR, Hyman P, Gregus J, Lluria-Prevatt M, Nagle R, Bowden GT (1999) Induction of melanoma in TPras transgenic mice. Carcinogenesis 20:1747–1753

    Article  PubMed  CAS  Google Scholar 

  • Carriere C, Seeley ES, Goetze T, Longnecker DS, Korc M (2007) The Nestin progenitor lineage is the compartment of origin for pancreatic intraepithelial neoplasia. Proc Natl Acad Sci USA 104:4437–4442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H, Johnson L, Akashi K, Tuveson DA, Jacks T, Gilliland DG (2004) Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 113:528–538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen X, Mitsutake N, LaPerle K, Akeno N, Zanzonico P, Longo VA, Mitsutake S, Kimura ET, Geiger H, Santos E et al (2009) Endogenous expression of Hras(G12V) induces developmental defects and neoplasms with copy number imbalances of the oncogene. Proc Natl Acad Sci USA 106:7979–7984

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chin L, de Sauvage F, Egeblad M, Olive KP, Tuveson D, Weiss W (2013) Recapitulating human cancer in a mouse. Nat Biotechnol 31:392–395

    Article  PubMed  CAS  Google Scholar 

  • Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon-Cardo C, Horner JW 2nd, DePinho RA (1997) Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 11:2822–2834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Collins MA, Bednar F, Zhang Y, Brisset JC, Galban S, Galban CJ, Rakshit S, Flannagan KS, Adsay NV, Pasca di Magliano M (2012a) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122:639–653

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Collins MA, Brisset JC, Zhang Y, Bednar F, Pierre J, Heist KA, Galban CJ, Galban S, di Magliano MP (2012b) Metastatic pancreatic cancer is dependent on oncogenic Kras in mice. PLoS One 7:e49707

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dail M, Li Q, McDaniel A, Wong J, Akagi K, Huang B, Kang HC, Kogan SC, Shokat K, Wolff L et al (2010) Mutant Ikzf1, KrasG12D, and Notch1 cooperate in T lineage leukemogenesis and modulate responses to targeted agents. Proc Natl Acad Sci USA 107:5106–5111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davies EJ, Marsh Durban V, Meniel V, Williams GT, Clarke AR (2014) PTEN loss and KRAS activation leads to the formation of serrated adenomas and metastatic carcinoma in the mouse intestine. J Pathol 233(1):27–38

    Article  PubMed  CAS  Google Scholar 

  • De La OJ, Emerson LL, Goodman JL, Froebe SC, Illum BE, Curtis AB, Murtaugh LC (2008) Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci USA 105:18907–18912

    Article  Google Scholar 

  • Delmas V, Beermann F, Martinozzi S, Carreira S, Ackermann J, Kumasaka M, Denat L, Goodall J, Luciani F, Viros A et al (2007) Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev 21:2923–2935

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T (2005) Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 11:63–70

    Article  PubMed  CAS  Google Scholar 

  • Estep AL, Tidyman WE, Teitell MA, Cotter PD, Rauen KA (2006) HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am J Med Genet A 140:8–16

    Article  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  • Fisher GH, Wellen SL, Klimstra D, Lenczowski JM, Tichelaar JW, Lizak MJ, Whitsett JA, Koretsky A, Varmus HE (2001) Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 15:3249–3262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gremer L, Merbitz-Zahradnik T, Dvorsky R, Cirstea IC, Kratz CP, Zenker M, Wittinghofer A, Ahmadian MR (2011) Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum Mutat 32:33–43

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gripp KW, Lin AE (2012) Costello syndrome: a Ras/mitogen activated protein kinase pathway syndrome (rasopathy) resulting from HRAS germline mutations. Genet Med 14:285–292

    Article  PubMed  CAS  Google Scholar 

  • Grippo PJ, Nowlin PS, Demeure MJ, Longnecker DS, Sandgren EP (2003) Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice. Cancer Res 63:2016–2019

    PubMed  CAS  Google Scholar 

  • Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I, Canamero M, Rodriguez-Justo M, Serrano M, Barbacid M (2011) Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19:728–739

    Article  PubMed  CAS  Google Scholar 

  • Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M, Campuzano V, Barbacid M (2003) Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4:111–120

    Article  PubMed  CAS  Google Scholar 

  • Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, Dubus P, Sandgren EP, Barbacid M (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302

    Article  PubMed  CAS  Google Scholar 

  • Habbe N, Shi G, Meguid RA, Fendrich V, Esni F, Chen H, Feldmann G, Stoffers DA, Konieczny SF, Leach SD, Maitra A (2008) Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci USA 105:18913–18918

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN, Niwa-Kawakita M, Sweet-Cordero A, Sebolt-Leopold J, Shannon KM et al (2008) Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet 40:600–608

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605–1617

    Article  PubMed  CAS  Google Scholar 

  • Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    Article  PubMed  CAS  Google Scholar 

  • Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    Article  PubMed  CAS  Google Scholar 

  • Hung KE, Maricevich MA, Richard LG et al (2010) Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc Natl Acad Sci USA 107:1565–1570

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV, Moses HL (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 20:3147–3160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M, Jacks T (2005) The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 65:10280–10288

    Article  PubMed  CAS  Google Scholar 

  • Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Janssen KP, El-Marjou F, Pinto D, Sastre X, Rouillard D, Fouquet C, Soussi T, Louvard D, Robine S (2002) Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology 123:492–504

    Article  PubMed  CAS  Google Scholar 

  • Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, Torrice C, Wu MC, Shimamura T, Perera SA et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448:807–810

    Article  PubMed  CAS  Google Scholar 

  • Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, Hruban RH, Maitra A, Kinzler K, Vogelstein B, Goggins M (2012) Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142(730–733):e739

    Google Scholar 

  • Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M, Buck A, Schwaiger M, Saur D, Schmid RM et al (2009) Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci USA 106:3354–3359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kohl NE, Omer CA, Conner MW, Anthony NJ, Davide JP, deSolms SJ, Giuliani EA, Gomez RP, Graham SL, Hamilton K et al (1995) Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1:792–797

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Haigis KM, McDaniel A, Harding-Theobald E, Kogan SC, Akagi K, Wong JC, Braun BS, Wolff L, Jacks T, Shannon K (2011) Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. Blood 117:2022–2032

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lin AE, Rauen KA, Gripp KW, Carey JC (2008) Clarification of previously reported Costello syndrome patients. Am J Med Genet A 146:940–943

    Article  CAS  Google Scholar 

  • Loh ML (2011) Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol 152:677–687

    Article  PubMed  CAS  Google Scholar 

  • Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, Dimagno EP, Andren-Sandberg A, Domellof L (1993) Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 328:1433–1437

    Article  PubMed  CAS  Google Scholar 

  • Maitra A, Hruban RH (2008) Pancreatic cancer. Annu Rev Pathol 3:157–188

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Malka D, Hammel P, Maire F, Rufat P, Madeira I, Pessione F, Levy P, Ruszniewski P (2002) Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut 51:849–852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martin ES, Belmont PJ, Sinnamon MJ, Richard LG, Yuan J, Coffee EM, Roper J, Lee L, Heidari P, Lunt SY et al (2013) Development of a colon cancer GEMM-derived orthotopic transplant model for drug discovery and validation. Clin Cancer Res 19:2929–2940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mendez HM, Opitz JM (1985) Noonan syndrome: a review. Am J Med Genet 21:493–506

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen R, Linn SC, van der Valk M, Mooi WJ, Berns A (2001) Mouse model for lung tumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene. Oncogene 20:6551–6558

    Article  PubMed  CAS  Google Scholar 

  • Morton JP, Jamieson NB, Karim SA, Athineos D, Ridgway RA, Nixon C, McKay CJ, Carter R, Brunton VG, Frame MC et al. (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology 139: 586–597, 597 e581–586

    Google Scholar 

  • Nava C, Hanna N, Michot C, Pereira S, Pouvreau N, Niihori T, Aoki Y, Matsubara Y, Arveiler B, Lacombe D et al (2007) Cardio-facio-cutaneous and Noonan syndromes due to mutations in the RAS/MAPK signalling pathway: genotype-phenotype relationships and overlap with Costello syndrome. J Med Genet 44:763–771

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pacheco-Pinedo EC, Durham AC, Stewart KM, Goss AM, Lu MM, Demayo FJ, Morrisey EE (2011) Wnt/beta-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium. J Clin Invest 121:1935–1945

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Philip B, Roland CL, Daniluk J, Liu Y, Chatterjee D, Gomez SB, Ji B, Huang H, Wang H, Fleming JB et al (2013) A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology 145:1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Quaife CJ, Pinkert CA, Ornitz DM, Palmiter RD, Brinster RL (1987) Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell 48:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sansom OJ, Meniel V, Wilkins JA, Cole AM, Oien KA, Marsh V, Jamieson TJ, Guerra C, Ashton GH, Barbacid M, Clarke AR (2006) Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci USA 103:14122–14127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7:295–308

    Article  PubMed  CAS  Google Scholar 

  • Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G, van der Burgt I, Musante L, Kalscheuer V, Wehner LE et al (2006) Germline KRAS mutations cause Noonan syndrome. Nat Genet 38:331–336

    Article  PubMed  CAS  Google Scholar 

  • Schuhmacher AJ, Guerra C, Sauzeau V, Canamero M, Bustelo XR, Barbacid M (2008) A mouse model for Costello syndrome reveals an Ang II-mediated hypertensive condition. J Clin Invest 118:2169–2179

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P (1987) Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49:465–475

    Article  PubMed  CAS  Google Scholar 

  • Snippert HJ, Schepers AG, van Es JH, Simons BD, Clevers H (2014) Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep 15:62–69

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tartaglia M, Gelb BD (2005) Noonan syndrome and related disorders: genetics and pathogenesis. Annu Rev Genomics Hum Genet 6:45–68

    Article  PubMed  CAS  Google Scholar 

  • Trobridge P, Knoblaugh S, Washington MK, Munoz NM, Tsuchiya KD, Rojas A, Song X, Ulrich CM, Sasazuki T, Shirasawa S, Grady WM (2009) TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway. Gastroenterology 136(1680–1688):e1687

    Google Scholar 

  • Wagner M, Greten FR, Weber CK, Koschnick S, Mattfeldt T, Deppert W, Kern H, Adler G, Schmid RM (2001) A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev 15:286–293

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang J, Liu Y, Li Z, Du J, Ryu MJ, Taylor PR, Fleming MD, Young KH, Pitot H, Zhang J (2010) Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood 116:5991–6002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang J, Liu Y, Li Z, Wang Z, Tan LX, Ryu MJ, Meline B, Du J, Young KH, Ranheim E et al (2011) Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner. Blood 118:368–379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu J, Hedberg C, Dekker FJ, Li Q, Haigis KM, Hwang E, Waldmann H, Shannon K (2012) Inhibiting the palmitoylation/depalmitoylation cycle selectively reduces the growth of hematopoietic cells expressing oncogenic Nras. Blood 119:1032–1035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work was supported by grants from the European Research Council (ERC-AG/250297-RAS AHEAD), the EU-Framework Programme (HEALTH-2010-260791), and the Spanish Ministry of Economy and Competitiveness (SAF2011-30173) to MB and grants from Fondo de Investigación Sanitaria (PI042124, PI08-1623, PI11-02529), Autonomous Community of Madrid (GR/SAL/0349/2004), and Fundación Ramón Areces (FRA 01-09-001) to CG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carmen Guerra or Mariano Barbacid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Guerra, C., Barbacid, M. (2014). Mouse Models of RAS-Induced Tumors and Developmental Disorders. In: Wittinghofer, A. (eds) Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1806-1_10

Download citation

Publish with us

Policies and ethics