Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 1862 Accesses

Abstract

The increasing demand for higher computing power, smaller dimensions, and lower power consumption of integrated circuits leads to a pressing need to downscale semiconductor components. Moore’s law, which has continued unabated for 40 years, is the empirical observation that component density and performance of integrated circuits doubles every 2 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altland, A., Simons, B.D.: Condensed Matter Field Theory. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. Blaizot, J.P., Ripka, G.: Quantum Theory of Finite Systems. MIT, Cambridge (1986)

    Google Scholar 

  3. Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction. Oxford University Press, Oxford (2004)

    Google Scholar 

  4. Coleman, P.: Introduction to Many Body Physics. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  5. Dickhoff, W.H., VanNeck, D.: Many-Body Theory Exposed!: Propagator Description of Quantum Mechanics in Many-Body Systems, 2nd edn. World Scientific, Hackensack (2008)

    Book  Google Scholar 

  6. Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. Phys. Soc. A 114(769), 710–728 (1927)

    Article  MATH  Google Scholar 

  7. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, San Francisco (1971)

    Google Scholar 

  8. Greiner, W.: Quantum Mechanics: An Introduction, 4th edn. Springer, Berlin/New York (2001)

    Book  Google Scholar 

  9. Mattuck, R.D.: A Guide to Feynman Diagrams in the Many-Body Problem, 2nd edn. Dover, New York (1992)

    Google Scholar 

  10. Pauli, W.: Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Zs. f. Phys. 31, 765–783 (1925)

    Article  MATH  Google Scholar 

  11. Slater, J.C.: The theory of complex spectra. Phys. Rev. 34, 1293–1322 (1929)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Pourfath, M. (2014). Many-Body Systems. In: The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1800-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1800-9_3

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1799-6

  • Online ISBN: 978-3-7091-1800-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics