Skip to main content

Plant Peroxisome Dynamics: Movement, Positioning and Connections

  • Chapter
  • First Online:
Molecular Machines Involved in Peroxisome Biogenesis and Maintenance

Abstract

Compartmentalization of metabolic functions in membrane bounded organelles is a defining characteristic of eukaryotes. Movement, positioning and morphology of such organelles are key determinants for function, maintenance and inheritance. For example, mutations in the molecular motors (myosin) that drive organelle movement in plants result in dwarf plants with reduced seed set. Therefore, movement and positioning of organelles are key factors for plant development and growth.

Peroxisomes are both functionally and morphologically pleomorphic. Several metabolic processes span more than one organelle, highlighting the importance of coordinated movement and positioning of these organelles. Here, we deal with peroxisome dynamics in terms of movement, positioning and how these dynamics may relate to their functional role. In order to understand the potential role of such movement, a brief discussion of the functional role of plant peroxisomes is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta IF, Farmer EE (2010) Jasmonates. Arabidopsis Book 8:e0129. doi:10.1199/tab.0129

    Article  PubMed Central  PubMed  Google Scholar 

  • Akhmanova A, Hammer JA (2010) Linking molecular motors to membrane cargo. Curr Opin Cell Biol 22(4):479–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008) Myosin XI-K is required for rapid trafficking of Golgi stacks, peroxisomes and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146(3):1098–1108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avisar D, Abu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes IA (2009) A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol 150(2):700–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brandizzi F, Wasteneys GO (2013) Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubule. Plant J. doi:10.1111/tpj.12227

    Google Scholar 

  • Cai G, Cresti M (2013) Are kinesins required for organelle trafficking in plant cells? Front Plant Cell Biol 3:170. doi:10.3389/fpls.2012.00170

    Google Scholar 

  • Castillo MC, León J (2008) Expression of the β-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. J Exp Biol 59(8):2171–2179

    CAS  Google Scholar 

  • Castillo MC, Sandalio LM, Del Rio LA, Leon J (2008) Peroxisome proliferation, wound-activated responses and expression of peroxisome-associated genes are cross-regulated but uncoupled in Arabidopsis thaliana. Plant Cell Environ 31(4):492–505

    Article  CAS  PubMed  Google Scholar 

  • Chuong SDX, Mullen RT, Muench DG (2002) Identification of a rice RNA- and microtubule-binding protein as the multifunctional protein, a peroxisomal enzyme involved in the β-oxidation of fatty acids. J Biol Chem 277(4):2419–2429

    Article  CAS  PubMed  Google Scholar 

  • Chuong SDX, Park NL, Freeman MC, Mullen RT, Muench DG (2005) The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells. BMC Cell Biol 6:40. doi:10.1186/1471-2121-1186-1140

    Article  PubMed Central  PubMed  Google Scholar 

  • Collings DA, Harper JDI, Vaughn KC (2003) The association of peroxisomes with the developing cell plate in dividing onion root cells depends on actin microfilaments and myosin. Planta 218(2):204–216

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97(7):3718–3723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Duve C, Baudin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46(2):323–357

    PubMed  Google Scholar 

  • de Felipe M, Lucas MM, Pozuelo JM (1988) Cytochemical study of catalase and peroxidase in the mesophyll of Lolium rigidum plants treated with isoproturon. J Plant Physiol 132:67–73

    Article  Google Scholar 

  • Del Rio LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506(1):1–11

    Article  PubMed  Google Scholar 

  • Fan J, Quan S, Orth T, Awai C, Chory J, Hu J (2005) The Arabidopsis PEX12 gene is required for peroxisome biogenesis and is essential for development. Plant Physiol 139(1):231–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferreira M, Bird B, Davies DD (1989) The effect of light on the structure and organization of Lemna peroxisomes. J Exp Biol 40:1029–1035

    Google Scholar 

  • Flynn CR, Heinze M, Schumann U, Gietl C, Trelease RN (2005) Compartmentalization of the plant peroxin, AtPex10p, within subdomain(s) of ER. Plant Sci 168(3):635–652

    Article  CAS  Google Scholar 

  • Foissner I, Menzel D, Wasteneys GO (2009) Microtubule-dependent motility and orientation of the cortical endoplasmic reticulum in elongating characean internodal cells. Cell Motil Cytoskeleton 66(3):142–155

    Article  CAS  PubMed  Google Scholar 

  • Frederick SE, Newcomb EH (1969) Microbody-like organelles in leaf cells. Science 163(3873):1353–1355

    Article  CAS  PubMed  Google Scholar 

  • Furt F, Lemoi K, Tuzel E, Vidali L (2012) Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells. BMC Plant Biol 12:70. doi:10.1186/1471-2229-1112-1170

  • Grimm S (2012) The ER-mitochondria interface: the social network of cell death. Biochim Biophys Acta 1823(2):327–334

    Article  CAS  PubMed  Google Scholar 

  • Hardham AR, Takemoto D, White RG (2008) Rapid and dynamic subcellular reorganisation following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol 8:63. doi:10.1186/1471-2229-1188-1163

    Article  PubMed Central  PubMed  Google Scholar 

  • Hashimoto K, Igarashi H, Mano S, Nishimura M, Shimmen T, Yokota E (2005) Peroxisomal localization of a myosin XI isoform in Arabidopsis thaliana. Plant Cell Physiol 46(5):782–789

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Igarashi H, Mano S, Takenaka C, Shiina T, Yamaguchi M, Demura T, Nishimura M, Shimmen T, Yokota E (2008) An isoform of Arabidopsis myosin XI interacts with small GTPases in its C-terminal tail region. J Exp Bot 59(13):3523–3531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  CAS  PubMed  Google Scholar 

  • Hu JP, Aguirre M, Peto C, Alonso J, Ecker J, Chory J (2002) A role for peroxisomes in photomorphogenesis and development of Arabidopsis. Science 297(5580):405–409

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24(6):2279–2303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jedd G, Chua NH (2002) Visualization of peroxisomes in living plant cells reveals acto-myosin-dependent cytoplasmic streaming and peroxisome budding. Plant Cell Physiol 43(4):384–392

    Article  CAS  PubMed  Google Scholar 

  • Kachar B, Reese TS (1988) The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments. J Cell Biol 106(5):1545–1552

    Article  CAS  PubMed  Google Scholar 

  • Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M (2009) Short actin-based mechanism for light-directed chloroplast movementin Arabidopsis. Proc Natl Acad Sci USA 106(31):13106–13111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamigaki A, Kondo M, Mano S, Hayashi M, Nishimura M (2009) Suppression of peroxisome biogenesis factor 10 reduces cuticular wax accumulation by disrupting the ER network in Arabidopsis thaliana. Plant Cell Physiol 50(12):2034–2046

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. Arabidopsis Book 7:e0123. doi:10.1199/tab.0123

    Article  PubMed Central  PubMed  Google Scholar 

  • Koh S, Somerville S (2006) Show and tell: cell biology of pathogen invasion. Curr Opin Plant Biol 9(4):406–413

    Article  CAS  PubMed  Google Scholar 

  • Koh S, Andre AL, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44(3):516–529

    Article  CAS  PubMed  Google Scholar 

  • Koo AJK, Howe GA (2007) Role of peroxisomal β-oxidation in the production of plant signaling compounds. Plant Signal Behav 2(1):20–22

    Article  PubMed Central  PubMed  Google Scholar 

  • Li J, Nebenfuhr A (2007) Organelle targeting of myosin XI is mediated by two globular tail domains with separate cargo binding sites. J Biol Chem 282(28):20593–20602

    Article  CAS  PubMed  Google Scholar 

  • Li C, Schilmiller AL, Liu G, Lee GI, Javantry S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, Howe GA (2005) Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17(3):971–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defences both contribute to nonhost resistance in Arabidopsis. Science 310(5751):1180–1183

    Article  CAS  PubMed  Google Scholar 

  • Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Curr Opin Plant Biol 11(4):404–411

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19(24):6770–6777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mano S, Nakamori C, Hayashi M, Kato A, Kondo M, Nishimura M (2002) Distribution and characterization of peroxisomes in arabidopsis by visualization with GFP: dynamic morphology and actin- dependent movement. Plant Cell Physiol 43(3):331–341

    Article  CAS  PubMed  Google Scholar 

  • Mano S, Nakamori C, Kondo M, Hayashi M, Nishimura M (2004) An Arabidopsis dynamin-related protein, DRP3A, controls both peroxisomal and mitochondrial division. Plant J 38(3):487–498

    Article  CAS  PubMed  Google Scholar 

  • Mathur J, Mathur N, Hulskamp M (2002) Simultaneous visualisation of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol 128(3):1031–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathur J, Mammone A, Barton KA (2012) Organelle extensions in plant cells. J Integr Plant Biol 54(11):851–867

    CAS  PubMed  Google Scholar 

  • McCurdy DW (1999) Is 2,3-butanedione monoxime an effective inhibitor of myosin-based activities in plant cells? Protoplasma 209(1–2):120–125

    Article  CAS  PubMed  Google Scholar 

  • Mitsuya S, El-shami M, Sparkes IA, Charlton W, Lousa CM, Johnson B, Baker A (2010) Salt stress causes peroxisome proliferation, but inducing peroxisome proliferation does not improve NaCl tolerance in Arabidopsis thaliana. PLoS One 5:e9408. doi:10.1371/journal.pone.0009408

    Article  PubMed Central  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller GAD, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309

    Article  CAS  PubMed  Google Scholar 

  • Morita MT, Nakamura M (2012) Dynamic behavior of plastids related to environmental response. Curr Opin Plant Biol 15(6):722–728

    Article  CAS  PubMed  Google Scholar 

  • Morre DJ, Selldén G, Ojanperä K, Sandelius AS, Egger A, Morré DM, Chalko CM, Chalki RA (1990) Peroxisome proliferation in Norway spruce induced by ozone. Protoplasma 155(1–3):58–65

    Article  CAS  Google Scholar 

  • Muench DG, Mullen RT (2003) Peroxisome dynamics in plant cells: a role for the cytoskeleton. Plant Sci 164(3):307–315

    Article  CAS  Google Scholar 

  • Mullen RT, Trelease RN (2006) The ER-peroxisome connection in plants: development of the “ER semi-autonomous peroxisome maturation and replication” model for plant peroxisome biogenesis. Biochim Biophys Acta 1763(12):1655–1668

    Article  CAS  PubMed  Google Scholar 

  • Nebenfuhr A (2007) Organelle dynamics during cell division. Plant Cell Monogr. doi:10.1007/7089_2007_1129

    Google Scholar 

  • Nila AG, Sandalio LM, Lopez MG, Gomez M, del Rio LA, Gomez-Lim MA (2006) Expression of a peroxisome proliferator-activated receptor gene (xPPARα) from Xenopus laevis in tobacco (Nicotiana tabacum) plants. Planta 224(3):569–581

    Article  CAS  PubMed  Google Scholar 

  • Nishimura M, Yamaguchi S, Mori T, Akazawa T, Yokota S (1986) Immunocytochemical analysis shows that glyoxysomes are directly transformed to leaf peroxisomes during greening of pumpkin cotyledons. Plant Physiol 81(1):313–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimura M, Takeuchi Y, Debellis L, Haranishimura I (1993) Leaf peroxisomes are directly transformed to glyoxysomes during senescence of pumpkin cotyledons. Protoplasma 175(3–4):131–137

    Article  Google Scholar 

  • Nito K, Kamigaki A, Kondo M, Hayashi M, Nishimura M (2007) Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants. Plant Cell Physiol 48(6):763–774

    Article  CAS  PubMed  Google Scholar 

  • Nothangel EA, Webb WW (1982) Hydrodynamic models of viscous coupling between motile myosin and endoplasm in Characean algae. J Cell Biol 94(2):444–454

    Article  Google Scholar 

  • Nyathi Y, Baker A (2006) Plant peroxisomes as a source of signalling molecules. Biochim Biophys Acta 1763(12):1478–1495

    Article  CAS  PubMed  Google Scholar 

  • Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M (2003) CHLOROPLAST UNUSUAL POSITIONING1 is essential for proper chloroplast positioning. Plant Cell 15(12):2805–2815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oikawa K, Yamasato A, Kong SG, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 Is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148(2):829–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ojangu EL, Jarve K, Paves H, Truve E (2007) Arabidopsis thaliana myosin XIK is involved in root hair as well as trichome morphogenesis on stems and leaves. Protoplasma 230(3–4):193–202

    Article  CAS  PubMed  Google Scholar 

  • Ojangu EL, Tanner K, Pata P, Jarve K, Holweg C, Truve E, Paves H (2012) Myosins XI-K, XI-1, and XI-2 are required for development of pavement cells, trichomes, and stigmatic papillae in Arabidopsis. BMC Plant Biol 12:81. doi:10.1186/1471-2229-1112-1181

  • Oksanen E, Haikio E, Sober J, Karnosky DF (2003) Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol 161(3):791–799

    Article  Google Scholar 

  • Palma JM, Garrido M, Rodriguez Garcia MI, del Rio LA (1991) Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. Arch Biochem Biophys 287(1):68–74

    Article  CAS  PubMed  Google Scholar 

  • Peremyslov VV, Prokhnevsky AI, Avisar D, Dolja VV (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis thaliana. Plant Physiol 146(3):1109–1116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peremyslov VV, Prokhnevsky AI, Dolja VV (2010) Class XI myosins are required for development, cell expansion, and F-actin organization in Arabidopsis. Plant Cell 22(6):1883–1897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pracharoenwattana I, Smith SM (2008) When is a peroxisome not a peroxisome? Trends Plant Sci 13(10):522–525

    Article  CAS  PubMed  Google Scholar 

  • Prestele J, Hierl G, Scherling C, Hetkamp S, Schwechheimer C, Isono E, Weckwerth W, Wanner G, Gietl C (2010) Different functions of the C3HC4 zinc RING finger peroxisome PEX10, PEX2 and PEX12 in peroxisome formation and matrix protein import. Proc Natl Acad Sci USA 107(33):14915–14920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prokhnevsky AI, Peremyslov VV, Dolja VV (2008) Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation and organelle motility. Proc Natl Acad Sci USA 105(50):19744–19749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reisen D, Hanson MR (2007) Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles. BMC Plant Biol 7:6. doi:10.1186/1471-2229-1187-1186

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Sparkes IA, Hawes C, del Rio LA, Sandalio LM (2009) Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium. Free Radic Biol Med 47(11):1632–1639

    Article  CAS  PubMed  Google Scholar 

  • Rowland AA, Voeltz G (2012) Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol 13(10):607–615

    Article  CAS  PubMed  Google Scholar 

  • Sampathkumar A, Lindeboom JJ, Debolt S, Gutierrez R, Ehrhardt DW, Ketelaar T, Persson S (2011) Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell 23(6):2302–2313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC, del Río LA (2013) Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. In: Del Rio LA (ed) Peroxisomes and their key role in cellular signaling and metabolism. Springer, Alemania

    Google Scholar 

  • Sautter C (1986) Microbody transition in greening watermelon cotyledons. Double immunocytochemical labeling of isocitrate lyase and hydroxypyruvate reductase. Planta 167(4):491–503

    Article  CAS  PubMed  Google Scholar 

  • Schnarrenberger C, Burkhard C (1977) In-vitro interaction between chloroplasts and peroxisomes as controlled by inorganic phosphate. Planta 134(2):109–114

    Article  CAS  PubMed  Google Scholar 

  • Schumann U, Wanner G, Veenhuis M, Schmid M, Gietl C (2003) AthPEX10, a nuclear gene essential for peroxisome and storage organelle formation during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 100(16):9626–9631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schumann U, Prestele J, O’Geen H, Brueggeman R, Wanner G, Gietl C (2007) Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. Proc Natl Acad Sci USA 104(3):1069–1074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott I, Sparkes IA, Logan DC (2007) The missing link: inter-organellar connections in mitochondria and peroxisomes? Trends Plant Sci 12(9):380–381

    Article  CAS  PubMed  Google Scholar 

  • Sheahan MB, Rose RJ, McCurdy DW (2007) Mechanisms of organelle inheritance in dividing plant cells. J Integr Plant Biol 49(8):1208–1218

    Article  Google Scholar 

  • Sinclair AM, Trobacher CP, Mathur N, Greenwood JS, Mathur J (2009) Peroxule extension over ER-defined paths constitutes a rapid subcellular response to hydroxyl stress. Plant J 59(2):231–242

    Article  CAS  PubMed  Google Scholar 

  • Sparkes I (2010) Motoring around the plant cell: insights from plant myosins. Biochem Soc Trans 38(3):833–838

    Article  CAS  PubMed  Google Scholar 

  • Sparkes I (2011) Recent advances in understanding plant myosin function: life in the fast lane. Mol Plant 4(5):805–812

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA, Brandizzi F, Slocombe SP, El-Shami M, Hawes C, Baker A (2003) An Arabidopsis pex10 null mutant is embryo lethal, implicating peroxisomes in an essential role during plant embryogenesis. Plant Physiol 133(4):1809–1819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sparkes IA, Hawes C, Baker A (2005) AtPEX2 and AtPEX10 are targeted to peroxisomes independently of known endoplasmic reticulum trafficking routes. Plant Physiol 139(2):690–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sparkes IA, Teanby NA, Hawes C (2008) Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: a genetic tool for the next generation. J Exp Biol 59(9):2499–2512

    CAS  Google Scholar 

  • Sparkes IA, Ketelaar T, Ruijter NC, Hawes C (2009) Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum. Traffic 10(5):567–571

    Article  CAS  PubMed  Google Scholar 

  • Strader LC, Bartel B (2011) Transport and metabolism of the endogenous auxin precursor indole-3-butryic acid. Mol Plant 4(3):477–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of subcellular re-organisation in response to infection of Arabidopsis by oomycete pathogens. Plant J 33(4):775–792

    Article  CAS  PubMed  Google Scholar 

  • Theodoulou F, Eastmond P (2012) Seed storage oil catabolism: a story of give and take. Curr Opin Plant Biol 15(3):322–328

    Article  CAS  PubMed  Google Scholar 

  • Titus DE, Becker WM (1985) Investigation of the glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J Cell Biol 101(4):1288–1299

    Article  CAS  PubMed  Google Scholar 

  • Vick JK, Nebenfuhr A (2012) Putting the breaks on: regulating organelle movements in plant cells. J Integr Plant Biol 54(11):868–874

    CAS  PubMed  Google Scholar 

  • Vidali L, Bezanilla M (2012) Physcomitrella patens: a model for tip cell growth and differentiation. Curr Opin Plant Biol 15(6):625–631

    Article  CAS  PubMed  Google Scholar 

  • Wolff K, Marenduzzo D, Cates ME (2012) Cytoplasmic streaming in plant cells: the role of wall slip. J R Soc Interface 9(71):1398–1408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng M, Beck M, Muller J, Chen T, Wang X, Wang F, Wang Q, Wang Y, Baluska F, Logan DC, Samaj J, Lin J (2009) Actin turnover is required for myosin-dependent mitochondrial movements in Arabidopsis root hairs. PLoS One 4(6):e5961

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imogen Sparkes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Sparkes, I., Gao, H. (2014). Plant Peroxisome Dynamics: Movement, Positioning and Connections. In: Brocard, C., Hartig, A. (eds) Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1788-0_21

Download citation

Publish with us

Policies and ethics