Skip to main content

Mouse Models with Peroxisome Biogenesis Defects

  • Chapter
  • First Online:
Molecular Machines Involved in Peroxisome Biogenesis and Maintenance

Abstract

Peroxisomes are ubiquitous organelles in mammalian cells but it is still unclear how they contribute to normal development and tissue homeostasis. To address this question, gene targeting techniques have been applied on several peroxins to interfere with peroxisome biogenesis in mice. Both peroxins involved in peroxisomal matrix import and peroxins necessary for peroxisome division were inactivated. Besides generalized knockouts, mice were created with conditional inactivation of PEX genes either in certain cell types or induced in adulthood. Defective matrix import generates empty peroxisomal ghosts and metabolic derangements that are a direct consequence of peroxisome inactivity. In addition, ablation of functional peroxisomes from hepatocytes affects other cellular compartments such as mitochondria and the endoplasmic reticulum. Peroxisome inactivity in the central nervous system causes both developmental and degenerative pathologies. The impairment of peroxisome division in mice also results in cerebral and hepatic pathologies although peroxisomal metabolites are unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlemeyer B, Gottwald M, Baumgart-Vogt E (2012) Deletion of a single allele of the Pex11β gene is sufficient to cause oxidative stress, delayed differentiation and neuronal death in mouse brain. Dis Model Mech 5:125–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baes M, Gressens P, Baumgart E et al (1997) A mouse model for Zellweger syndrome. Nat Genet 17:49–57

    Article  CAS  PubMed  Google Scholar 

  • Baes M, Dewerchin M, Janssen A, Collen D, Carmeliet P (2002) Generation of Pex5-IoxP mice allowing the conditional elimination of peroxisomes. Genesis 32:177–178

    Article  CAS  PubMed  Google Scholar 

  • Baumgart E, Vanhorebeek I, Grabenbauer M et al (2001) Mitochondrial alterations caused by defective peroxisomal biogenesis in a mouse model for Zellweger syndrome (PEX5 knockout mouse). Am J Pathol 159:1477–1494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bjorkman J, Tonks I, Maxwell MA, Paterson C, Kay GF, Crane DI (2002) Conditional inactivation of the peroxisome biogenesis Pex13 gene by Cre-IoxP excision. Genesis 32:179–180

    Article  CAS  PubMed  Google Scholar 

  • Bottelbergs A, Verheijden S, Hulshagen L et al (2010) Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. GLIA 58:1532–1543

    PubMed  Google Scholar 

  • Bottelbergs A, Verheijden S, Van Veldhoven PP, Just W, Devos R, Baes M (2012) Peroxisome deficiency but not the defect in ether lipid synthesis causes activation of the innate immune system and axonal loss in the central nervous system. J Neuroinflammation 9:61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braverman N, Zhang R, Chen L et al (2010) A Pex7 hypomorphic mouse model for plasmalogen deficiency affecting the lens and skeleton. Mol Genet Metab 99:408–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brites P, Motley AM, Gressens P et al (2003) Impaired neuronal migration and endochondral ossification in PEX7 knockout mice: a model for rhizomelic chondrodysplasia punctata. Hum Mol Genet 12:2255–2267

    Article  CAS  PubMed  Google Scholar 

  • Brites P, Mooyer PAW, el Mrabet L, Duran M, Waterham HR, Wanders RJA (2009) Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain 132:482–492

    Article  PubMed  Google Scholar 

  • Brites P, Ferreira AS, da Silva TF et al (2011) Alkyl-glycerol rescues plasmalogen levels and pathology of ether-phospholipid deficient mice. PLoS One 6:e28539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta 1763:1565–1573

    Article  CAS  PubMed  Google Scholar 

  • Das AK, Hajra AK (1988) High incorporation of dietary 1-O-heptadecyl glycerol into tissue plasmalogens of young rats. FEBS Lett 227:187–190

    Article  CAS  PubMed  Google Scholar 

  • Dirkx R, Vanhorebeek I, Martens K et al (2005) Absence of peroxisomes in hepatocytes causes mitochondrial and ER abnormalities. Hepatology 41:868–878

    Article  CAS  PubMed  Google Scholar 

  • Dirkx R, Meyhi E, Asselberghs S, Reddy J, Baes M, Van Veldhoven PP (2007) β-oxidation in hepatocyte cultures from mice with peroxisomal gene knockouts. Biochem Biophys Res Commun 357:718–723

    Article  CAS  PubMed  Google Scholar 

  • Ebberink MS, Csanyi B, Chong WK et al (2010) Identification of an unusual variant peroxisome biogenesis disorder caused by mutations in the PEX16 gene. J Med Genet 47:608–615

    Article  CAS  PubMed  Google Scholar 

  • Ebberink MS, Koster J, Visser G et al (2012) A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11β gene. J Med Genet 49:307–313

    Article  CAS  PubMed  Google Scholar 

  • Faust PL (2003) Abnormal cerebellar histogenesis in Pex2 Zellweger mice reflects multiple neuronal defects induced by peroxisome deficiency. J Comp Neurol 461:394–413

    Article  CAS  PubMed  Google Scholar 

  • Faust PL, Hatten ME (1997) Targeted deletion of the PEX2 peroxisome assembly gene in mice provides a model for Zellweger syndrome, a human neuronal migration disorder. J Cell Biol 139:1293–1305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822:1363–1373

    Article  CAS  PubMed  Google Scholar 

  • Fujiki Y, Okumoto K, Kinoshita N, Ghaedi K (2006) Lessons from peroxisome-deficient Chinese hamster ovary (CHO) cell mutants. Biochim Biophys Acta 1763:1374–1381

    Article  CAS  PubMed  Google Scholar 

  • Girzalsky W, Saffian D, Erdmann R (2010) Peroxisomal protein translocation. Biochim Biophys Acta 1803:724–731

    Article  CAS  PubMed  Google Scholar 

  • Grum DE, Hansen LR, Drackley JK (1994) Peroxisomal β-oxidation of fatty acids in bovine and rat liver. Comp Biochem Physiol B Biochem Mol Biol 109:281–292

    Article  CAS  PubMed  Google Scholar 

  • Huber A, Koch J, Kragler F, Brocard C, Hartig A (2012) A subtle interplay between three Pex11 proteins shapes de novo formation and fission of peroxisomes. Traffic 13:157–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hulshagen L, Krysko O, Bottelbergs A et al (2008) Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration. J Neurosci 28:4015–4027

    Article  CAS  PubMed  Google Scholar 

  • Huybrechts SJ, Van Veldhoven PP, Brees C, Mannaerts GP, Los GV, Fransen M (2009) Peroxisome dynamics in cultured mammalian cells. Traffic 10:1722–1733

    Article  CAS  PubMed  Google Scholar 

  • Huyghe S, Schmalbruch H, De Gendt K et al (2006) Peroxisomal multifunctional protein 2 is essential for lipid homeostasis in Sertoli cells and for male fertility in mice. Endocrinology 147:2228–2236

    Article  CAS  PubMed  Google Scholar 

  • Janssen A, Baes M, Gressens P, Mannaerts GP, Declercq P, Van Veldhoven PP (2000) Docosahexaenoic acid deficit is not a major pathogenic factor in peroxisome-deficient mice. Lab Invest 80:31–35

    Article  CAS  PubMed  Google Scholar 

  • Janssen A, Gressens P, Grabenbauer M et al (2003) Neuronal migration depends on intact peroxisomal function in brain and in extraneuronal tissues. J Neurosci 23:9732–9741

    CAS  PubMed  Google Scholar 

  • Kassmann CM, Lappe-Siefke C, Baes M et al (2007) Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 39:969–976

    Article  CAS  PubMed  Google Scholar 

  • Keane MH, Overmars H, Wikander TM et al (2007) Bile acid treatment alters hepatic disease and bile acid transport in peroxisome-deficient PEX2 Zellweger mice. Hepatology 45:982–997

    Article  CAS  PubMed  Google Scholar 

  • Koch J, Brocard C (2011) Membrane elongation factors in organelle maintenance: the case of peroxisome proliferation. Biomol Concepts 2:353–364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch J, Brocard C (2012) PEX11 proteins attract Mff and human Fis1 to coordinate peroxisomal fission. J Cell Sci 125:3813–3826

    Article  CAS  PubMed  Google Scholar 

  • Kovacs WJ, Tape KN, Shackelford JE et al (2009) Peroxisome deficiency causes a complex phenotype because of hepatic SREBP/Insig dysregulation associated with endoplasmic reticulum stress. J Biol Chem 284:7232–7245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovacs WJ, Charles KN, Walter KM et al (2012) Peroxisome deficiency-induced ER stress and SREBP-2 pathway activation in the liver of newborn PEX2 knock-out mice. Biochim Biophys Acta 1821:895–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krysko O, Hulshagen L, Janssen A et al (2007) Neocortical and cerebellar developmental abnormalities in conditions of selective elimination of peroxisomes from brain or from liver. J Neurosci Res 85:58–72

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gould SJ (2002) PEX11 promotes peroxisome division independently of peroxisome metabolism. J Cell Biol 156:643–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Baumgart E, Dong G-X et al (2002a) PEX11a is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol 22:8226–8240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D, Gould SJ (2002b) PEX11b deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22:4358–4365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mannaerts GP, Debeer LJ, Thomas J, De Schepper PJ (1979) Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem 254:4585–4595

    CAS  PubMed  Google Scholar 

  • Martens K, Bottelbergs A, Baes M (2010) Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett 584:1054–1058

    Article  CAS  PubMed  Google Scholar 

  • Martens K, Bottelbergs A, Peeters A et al (2012) Peroxisome deficient aP2-Pex5 knockout mice display impaired white adipocyte and muscle function concomitant with reduced adrenergic tone. Mol Genet Metab 107:735–747

    Article  CAS  PubMed  Google Scholar 

  • Matsui S, Funahashi M, Honda A, Shimozawa N (2012) Newly identified milder phenotype of peroxisome biogenesis disorder caused by mutated PEX3 gene. Brain Dev 35:842–848. doi:10.1016/j.braindev.2012.10.017

    Article  PubMed  Google Scholar 

  • Maxwell M, Bjorkman J, Nguyen T et al (2003) Pex13 inactivation in the mouse disrupts peroxisome biogenesis and leads to a Zellweger syndrome phenotype. Mol Cell Biol 23:5947–5957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meinecke M, Cizmowski C, Schliebs W et al (2010) The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 12:273–277

    CAS  PubMed  Google Scholar 

  • Mignarri A, Vinciguerra C, Giorgio A et al (2012) Zellweger spectrum disorder with mild phenotype caused by PEX2 gene mutations. JIMD Rep 6:43–46

    Article  PubMed Central  PubMed  Google Scholar 

  • Muller CC, Nguyen TH, Ahlemeyer B et al (2011) PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress. Dis Model Mech 4:104–119

    Article  PubMed Central  PubMed  Google Scholar 

  • Nguyen T, Bjorkman J, Paton BC, Crane DI (2006) Failure of microtubule-mediated peroxisome division and trafficking in disorders with reduced peroxisome abundance. J Cell Sci 119:636–645

    Article  CAS  PubMed  Google Scholar 

  • Peeters A, Fraisl P, van den Berg S et al (2011a) Carbohydrate metabolism is perturbed in peroxisome deficient hepatocytes due to mitochondrial dysfunction, AMP activated protein kinase (AMPK) activation and peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) suppressi. J Biol Chem 286:42162–42179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peeters A, Swinnen JV, Van Veldhoven PP, Baes M (2011b) Hepatosteatosis in peroxisome deficient liver despite increased β-oxidation capacity and impaired lipogenesis. Biochimie 93:1828–1838

    Article  CAS  PubMed  Google Scholar 

  • Regal L, Ebberink MS, Goemans N et al (2010) Mutations in PEX10 are a cause of autosomal recessive ataxia. Ann Neurol 68:259–263

    CAS  PubMed  Google Scholar 

  • Rucktaschel R, Girzalsky W, Erdmann R (2011) Protein import machineries of peroxisomes. Biochim Biophys Acta 1808:892–900

    Article  PubMed  Google Scholar 

  • Schrader M, Bonekamp NA, Islinger M (2012) Fission and proliferation of peroxisomes. Biochim Biophys Acta 1822:1343–1357

    Article  CAS  PubMed  Google Scholar 

  • Sevin C, Ferdinandusse S, Waterham HR, Wanders RJ, Aubourg P (2011) Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene. Orphanet J Rare Dis 10:6–8

    Google Scholar 

  • Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta 1763:1733–1748

    Article  CAS  PubMed  Google Scholar 

  • Steinberg SJ, Snowden A, Braverman NE et al (2009) A PEX10 defect in a patient with no detectable defect in peroxisome assembly or metabolism in cultured fibroblasts. J Inherit Metab Dis 32:109–119

    Article  CAS  PubMed  Google Scholar 

  • Van Veldhoven PP (2010) Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 51:2863–2895

    Article  PubMed Central  PubMed  Google Scholar 

  • Weng H, Ji X, Naito Y et al (2013) Pex11alpha deficiency impairs peroxisome elongation and division and contributes to nonalcoholic fatty liver in mice. Am J Physiol Endocrinol Metab 304:E187–E196

    Article  CAS  PubMed  Google Scholar 

  • Wood PL, Khan MA, Smith T et al (2011) In vitro and in vivo plasmalogen replacement evaluations in rhizomelic chrondrodysplasia punctata and Pelizaeus-Merzbacher disease using PPI-1011, an ether lipid plasmalogen precursor. Lipids Health Dis 10:182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao Y, Karnati S, Qian G et al (2012) Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways. PLoS One 7:e41097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Baes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Baes, M., Verheijden, S., Van Veldhoven, P.P. (2014). Mouse Models with Peroxisome Biogenesis Defects. In: Brocard, C., Hartig, A. (eds) Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1788-0_2

Download citation

Publish with us

Policies and ethics