• Yury Vetyukov
Part of the Foundations of Engineering Mechanics book series (FOUNDATIONS)


We begin with a brief discussion of mathematical methods, which to a large extent determine the success of the analysis of thin-walled structures: a compact and consistent notation for the invariant tensor calculus in the three-dimensional Euclidean space; the procedure of asymptotic splitting, which is proven to be efficient for the dimensional reduction in the theories of thin bodies; the principle of virtual work in application to continuum mechanics; variational methods as a basis for numerical applications. The state of the art in the mechanics of thin-walled structures is discussed on the example plane stress problem of bending of a straight strip. In the literature review, the past research in the field is classified into the method of hypotheses, variational approaches, direct approaches and asymptotic methods. The introduction is concluded with a discussion of a hybrid asymptotic–direct approach, which is applied throughout the book to various kinds of thin-walled structures.


Internal Force Virtual Work Reference Configuration Invariant Vector Rank Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

310026_1_En_1_MOESM1_ESM.nb (363 kb)
(NB 363 kB)


  1. 1.
    ABAQUS theory manual, v 6.9 (2009). Dassault Systemes Simulia Corp, Providence, RI, USA Google Scholar
  2. 3.
    Altenbach J, Altenbach H, Eremeyev V (2010) On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch Appl Mech 80(1):73–92 CrossRefzbMATHGoogle Scholar
  3. 5.
    Andrianov I, Awrejcewicz J, Manevitch L (2004) Asymptotical mechanics of thin-walled structures. Springer, Berlin CrossRefGoogle Scholar
  4. 6.
    Antman S (1995) Nonlinear problems of elasticity. Springer, Berlin CrossRefzbMATHGoogle Scholar
  5. 10.
    Basar Y, Krätzig W (1985) Mechanik der Flächentragwerke. Theorie, Berechnungsmethoden, Anwendungsbeispiele. Vieweg, Wiesbaden (in German) CrossRefGoogle Scholar
  6. 11.
    Basar Y, Krätzig W (1989) A consistent shell theory for finite deformations. Acta Mech 76:73–87 CrossRefzbMATHMathSciNetGoogle Scholar
  7. 14.
    Batista M (2010) The derivation of the equations of moderately thick plates by the method of successive approximations. Acta Mech 210:159–168 CrossRefzbMATHGoogle Scholar
  8. 16.
    Bender C, Orszag S (1978) Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York zbMATHGoogle Scholar
  9. 17.
    Berdichevsky V (1983) Variational principles of continuum mechanics. Nauka, Moscow (in Russian) Google Scholar
  10. 18.
    Berdichevsky V (2009) Variational principles of continuum mechanics. Springer, Berlin Google Scholar
  11. 19.
    Berdichevsky V (2010) An asymptotic theory of sandwich plates. Int J Eng Sci 48(3):357–369 CrossRefzbMATHMathSciNetGoogle Scholar
  12. 26.
    Bonet J, Wood R (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge University Press, Cambridge CrossRefzbMATHGoogle Scholar
  13. 27.
    Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch Comput Methods Eng 10(3):215–296 CrossRefzbMATHMathSciNetGoogle Scholar
  14. 28.
    Carrera E, Petrolo M (2011) On the effectiveness of higher-order terms in refined beam theories. J Appl Mech 78:021,013 CrossRefGoogle Scholar
  15. 29.
    Cheng ZQ, Batra R (2000) Three-dimensional asymptotic analysis of multiple-electroded piezoelectric laminates. AIAA J 38(2):317–324 CrossRefGoogle Scholar
  16. 31.
    Chróścielewski J, Makowski J, Pietraszkiewicz W (2004) Statyka i dynamika powłok wielopłatowych. Nieliniowa teoria i metoda elementów skończonych (in Polish). Instytut Podstawowych Próblemow Techniki Polskiej Akademii Nauk, Warsaw Google Scholar
  17. 33.
    Ciarlet P (1997) Mathematical elasticity, studies in mathematics and its applications. Volume II: Theory of plates. North-Holland, Amsterdam Google Scholar
  18. 34.
    Ciarlet P (2005) An introduction to differential geometry with applications to elasticity. J Elast 1–3(78/79):1–215 MathSciNetGoogle Scholar
  19. 35.
    Ciarlet P, Lods V (1996) Asymptotic analysis of linearly elastic shells. III. Justification of Koiter’s shell equations. Arch Ration Mech Anal 136(1):191–200 CrossRefzbMATHMathSciNetGoogle Scholar
  20. 40.
    Danielson D (1997) Vectors and tensors in engineering and physics, 2nd edn. Addison-Wesley, Reading Google Scholar
  21. 42.
    Dauge M, Gruais I (1998) Edge layers in thin elastic plates. Comput Methods Appl Mech Eng 157:335–347 CrossRefzbMATHMathSciNetGoogle Scholar
  22. 43.
    Davini C, Paroni R, Puntel E (2008) An asymptotic approach to the torsion problem in thin walled beams. J Elast 93:149–176 zbMATHMathSciNetGoogle Scholar
  23. 50.
    Eliseev V (2003) Mechanics of elastic bodies. St Petersburg State Polytechnical University Publishing House, St Petersburg (in Russian) Google Scholar
  24. 51.
    Eliseev V (2006) Mechanics of deformable solid bodies. St Petersburg State Polytechnical University Publishing House, St Petersburg (in Russian) Google Scholar
  25. 54.
    Eremeyev V, Zubov L (2007) On constitutive inequalities in nonlinear theory of elastic shells. Z Angew Math Mech 87(2):94–101 CrossRefzbMATHMathSciNetGoogle Scholar
  26. 55.
    Eremeyev V, Zubov L (2008) Mechanics of elastic shells. Nauka, Moscow (in Russian) Google Scholar
  27. 56.
    Ericksen JL (1960) Tensor fields (Appendix to “The classical field theories”). In: Flügge S (ed) Principles of classical mechanics and field theory. Handbuch der physik (Encyclopedia of physics), vol III/1. Springer, Berlin, pp 794–858 Google Scholar
  28. 58.
    Fiedler L, Lacarbonara W, Vestroni F (2010) A generalized higher-order theory for multi-layered, shear-deformable composite plates. Acta Mech 209:85–98 CrossRefzbMATHGoogle Scholar
  29. 59.
    Freddi L, Morassi A, Paroni R (2007) Thin-walled beams: a derivation of Vlassov theory via γ-convergence. J Elast 86:263–296 zbMATHMathSciNetGoogle Scholar
  30. 60.
    Gantmakher F (1970) Lectures in analytical mechanics. Mir, Moscow zbMATHGoogle Scholar
  31. 64.
    Goldenveizer A (1961) Theory of elastic thin shells. Pergamon, New York Google Scholar
  32. 65.
    Goldenveizer A (1969) Boundary layer and its interaction with the interior state of stress of an elastic thin shell. J Appl Math Mech 33:971–1001 CrossRefGoogle Scholar
  33. 66.
    Goldenveizer A (1994) Algorithms of the asymptotic construction of linear two-dimensional thin shell theory and the St Venant principle. J Appl Math Mech 58:1039–1050 CrossRefMathSciNetGoogle Scholar
  34. 67.
    Golubev O (1963) Generalization of the theory of thin rods. Tr LPI 226:83–92 (in Russian) MathSciNetGoogle Scholar
  35. 68.
    Green A, Naghdi P (1990) A direct theory for composite rods. In: Eason G, Ogden R (eds) Elasticity: mathematical methods and applications; The Ian N Sneddon 70th birthday volume. Ellis Horwood, Chichester, pp 125–134 Google Scholar
  36. 70.
    Hamdouni A, Millet O (2006) An asymptotic non-linear model for thin-walled rods with strongly curved open cross-section. Int J Non-Linear Mech 41:396–416 CrossRefzbMATHMathSciNetGoogle Scholar
  37. 74.
    Hodges D (2006) Nonlinear composite beam theory. Progress in astronautics and aeronautics. American Institute of Aeronautics and Astronautics Google Scholar
  38. 76.
    Hughes T (2000) The finite element method: linear static and dynamic finite element analysis. Dover, New York Google Scholar
  39. 79.
    Irschik H, Gerstmayr J (2009) A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli–Euler beams. Acta Mech 206:1–21 CrossRefzbMATHGoogle Scholar
  40. 82.
    Kalamkarov A, Kolpakov A (2001) A new asymptotic model for a composite piezoelastic plate. Int J Solids Struct 38:6027–6044 CrossRefzbMATHGoogle Scholar
  41. 84.
    Kirchhoff G (1883) Vorlesungen über Mathematische Physik. Volume 1: Mechanik, 3rd edn. Teubner, Leipzig Google Scholar
  42. 85.
    Koiter W (1970) On the foundations of the linear theory of thin elastic shells. Proc K Ned Akad Wet B73:169–195 MathSciNetGoogle Scholar
  43. 86.
    Kolpakov A (2004) Stressed composite structures. Homogenized models for thin-walled nonhomogeneous structures with initial stresses. Foundations of engineering mechanics. Springer, Berlin Google Scholar
  44. 87.
    Krommer M (2002) Piezoelastic vibrations of composite Reissner–Mindlin-type plates. J Sound Vib 263:871–891 CrossRefGoogle Scholar
  45. 88.
    Krommer M (2003) The significance of non-local constitutive relations for composite thin plates including piezoelastic layers with prescribed electric charge. Smart Mater Struct 12:318–330 CrossRefGoogle Scholar
  46. 89.
    Krommer M, Irschik H (2000) A Reissner–Mindlin type plate theory including the direct piezoelectric and the pyroelectric effect. Acta Mech 141:51–69 CrossRefzbMATHGoogle Scholar
  47. 92.
    Kulikov G, Plotnikova S (2013) A new approach to three-dimensional exact solutions for functionally graded piezoelectric laminated plates. Compos Struct 106:33–46 CrossRefGoogle Scholar
  48. 93.
    Kumar A, Mukherjee S (2011) A geometrically exact rod model including in-plane cross-sectional deformation. J Appl Mech 78:011010 (10 pp) CrossRefGoogle Scholar
  49. 96.
    Lebedev L, Cloud M, Eremeyev VA (2010) Tensor analysis with applications in mechanics, 2nd edn. World Scientific, Singapore CrossRefzbMATHGoogle Scholar
  50. 99.
    Lin Y (2004) A higher order asymptotic analysis for orthotropic plates in stress edge conditions. J Elast 77:25–55 zbMATHGoogle Scholar
  51. 100.
    Love A (1927) A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  52. 101.
    Lurie A (1990) Non-linear theory of elasticity. North-Holland, Amsterdam Google Scholar
  53. 102.
    Lurie A (2002) Analytical mechanics. Springer, Berlin CrossRefzbMATHGoogle Scholar
  54. 103.
    Lurie A (2005) Theory of elasticity. Springer, Berlin CrossRefGoogle Scholar
  55. 104.
    Marinković D, Köppe H, Gabbert U (2009) Aspects of modeling piezoelectric active thin-walled structures. J Intell Mater Syst Struct 20(15):1835–1844 CrossRefGoogle Scholar
  56. 105.
    Maugin G, Attou D (1990) An asymptotic theory of thin piezoelectric plates. Q J Mech Appl Math 43:347–362 CrossRefzbMATHMathSciNetGoogle Scholar
  57. 106.
    Mauritson K (2009) Modelling of finite piezoelectric patches: comparing an approximate power series expansion theory with exact theory. Int J Solids Struct 46:1053–1065 CrossRefGoogle Scholar
  58. 109.
    Naghdi P (1972) The theory of shells and plates. In: Flügge S, Truesdell C (eds) Handbuch der Physik, vol VIa/2. Springer, Berlin Google Scholar
  59. 110.
    Nayfeh A (1973) Perturbation methods. Wiley, New York zbMATHGoogle Scholar
  60. 111.
    Nayfeh AH, Mook D (1995) Nonlinear oscillations. Wiley, New York CrossRefGoogle Scholar
  61. 112.
    Nayfeh AH, Pai P (2008) Linear and nonlinear structural mechanics. Wiley, New York Google Scholar
  62. 116.
    Opoka S, Pietraszkiewicz W (2009) On modified displacement version of the non-linear theory of thin shells. Int J Solids Struct 46(17):3103–3110 CrossRefzbMATHGoogle Scholar
  63. 118.
    O’Reilly O (1998) On constitutive equations for elastic rods. Int J Solids Struct 35(11):1009–1024 CrossRefzbMATHMathSciNetGoogle Scholar
  64. 119.
    Pietraszkiewicz W (1989) Geometrically nonlinear theories of thin elastic shells. Adv Mech 12(1):51–130 MathSciNetGoogle Scholar
  65. 121.
    Podio-Guidugli P (2008) Concepts in the mechanics of thin structures. In: Morassi A, Paroni R (eds) Classical and advanced theories of thin structures: mechanical and mathematical aspects. Springer, Berlin, pp 77–109 CrossRefGoogle Scholar
  66. 123.
    Rabotnov Y (1988) Mechanics of deformable solids. Science, Moscow (in Russian) Google Scholar
  67. 124.
    Rajagopal A, Hodges D, Yu W (2012) Asymptotic beam theory for planar deformation of initially curved isotropic strips. Thin-Walled Struct 50:106–115 CrossRefGoogle Scholar
  68. 125.
    Reddy J (2004) Mechanics of laminated composite plates and shells, 2nd edn. CRC Press, Boca Raton Google Scholar
  69. 129.
    Reissner E (1973) On one-dimensional large-displacement finite-strain beam theory. Stud Appl Math LII(2):87–95 Google Scholar
  70. 130.
    Reissner E (1985) Reflections on the theory of elastic plates. Appl Mech Rev 38(11):1453–1464 CrossRefGoogle Scholar
  71. 132.
    Rubin M (2000) Cosserat theories: shells, rods and points. Kluwer, Dordrecht CrossRefGoogle Scholar
  72. 133.
    Rubin M (2001) Numerical solution procedures for nonlinear elastic rods using the theory of a Cosserat point. Int J Solids Struct 38:4395–4437 CrossRefzbMATHGoogle Scholar
  73. 136.
    Saravanos D, Heyliger P (1999) Mechanics and computational models for laminated piezoelectric beams, plates, and shells. Appl Mech Rev 52(10):305–320 CrossRefGoogle Scholar
  74. 137.
    Schneider W (1978) Mathematische Methoden der Strömungsmechanik. Vieweg, Braunschweig (in German) CrossRefzbMATHGoogle Scholar
  75. 139.
    Serrin J (1959) Mathematical principles of classical fluid mechanics. In: Flügge S, Truesdell C (eds) Handbuch der physik (Encyclopedia of physics), vol VIII/1. Fluid dynamics I. Springer, Berlin, pp 125–263 Google Scholar
  76. 140.
    Shabana A (2008) Computational continuum mechanics. Cambridge University Press, Cambridge CrossRefzbMATHGoogle Scholar
  77. 142.
    Simo J, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput Methods Appl Mech Eng 58:79–116 CrossRefzbMATHGoogle Scholar
  78. 143.
    Simo J, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput Methods Appl Mech Eng 66:125–161 CrossRefzbMATHMathSciNetGoogle Scholar
  79. 144.
    Simo J, Vu-Quoc L (1991) A geometrically exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27(3):371–393 CrossRefzbMATHMathSciNetGoogle Scholar
  80. 145.
    Stoker J (1989) Differential geometry. Wiley classics library. Wiley, New York zbMATHGoogle Scholar
  81. 148.
    Tarn J (1997) An asymptotic theory for nonlinear analysis of multilayered anisotropic plates. J Mech Phys Solids 45(7):1105–1120 CrossRefzbMATHGoogle Scholar
  82. 151.
    Timoshenko S, Gere J (1961) Theory of elastic stability, 2nd edn. McGraw-Hill, New York Google Scholar
  83. 152.
    Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New York Google Scholar
  84. 153.
    Tovstik PE, Tovstik TP (2014) Two-dimensional linear model of elastic shell accounting for general anisotropy of material. Acta Mech. Online first. doi: 10.1007/s00707-013-0986-z
  85. 154.
    Truesdell C, Noll W (2004) The non-linear field theories of mechanics, 3rd edn. Springer, Berlin CrossRefGoogle Scholar
  86. 155.
    Truesdell C, Toupin R (1960) The classical field theories. In: Flügge S (ed) Principles of classical mechanics and field theory. Handbuch der physik (Encyclopedia of physics), vol III/1. Springer, Berlin, pp 226–790 Google Scholar
  87. 156.
    Valid R (1995) The nonlinear theory of shells through variational principles. Wiley, New-York zbMATHGoogle Scholar
  88. 157.
    Van Dyke M (1975) Perturbation methods in fluid mechanics. Parabolic Press, Stanford zbMATHGoogle Scholar
  89. 158.
    Vetyukov Y (2008) Direct approach to elastic deformations and stability of thin-walled rods of open profile. Acta Mech 200(3–4):167–176 CrossRefzbMATHGoogle Scholar
  90. 159.
    Vetyukov Y (2010) The theory of thin-walled rods of open profile as a result of asymptotic splitting in the problem of deformation of a noncircular cylindrical shell. J Elast 98(2):141–158 zbMATHMathSciNetGoogle Scholar
  91. 164.
    Vetyukov Y, Eliseev V (2010) Modeling of building frames as spatial rod structures with geometric and physical nonlinearities. Comput Cont Mech 3(3):32–45 (in Russian) CrossRefGoogle Scholar
  92. 167.
    Vetyukov Y, Kuzin A, Krommer M (2011) Asymptotic splitting in the three-dimensional problem of elasticity for non-homogeneous piezoelectric plates. Int J Solids Struct 48(1):12–23 CrossRefzbMATHGoogle Scholar
  93. 168.
    Vlasov V (1961) Thin-walled elastic beams, 2nd edn. Israel Program for Scientific Translations, Jerusalem Google Scholar
  94. 169.
    Wang Y, Tarn J (1994) A three-dimensional analysis for anisotropic inhomogeneous and laminated plates. Int J Solids Struct 31:497–515 CrossRefzbMATHMathSciNetGoogle Scholar
  95. 170.
    Washizu K (1974) Variational methods in elasticity and plasticity. Pergamon, Elmsford Google Scholar
  96. 172.
    Yeliseyev V, Orlov S (1999) Asymptotic splitting in the three-dimensional problem of linear elasticity for elongated bodies with a structure. J Appl Math Mech 63(1):85–92 CrossRefMathSciNetGoogle Scholar
  97. 174.
    Yu W, Hodges D, Volovoi V (2002) Asymptotic generalization of Reissner–Mindlin theory: accurate three-dimensional recovery for composite shells. Comput Methods Appl Mech Eng 191(44):5087–5109 CrossRefzbMATHGoogle Scholar
  98. 175.
    Yu W, Hodges D, Volovoi V (2003) Asymptotically accurate 3-D recovery from Reissner-like composite plate finite elements. Comput Struct 81(7):439–454 CrossRefGoogle Scholar
  99. 178.
    Zhilin P (1976) Mechanics of deformable directed surfaces. Int J Solids Struct 12:635–648 CrossRefMathSciNetGoogle Scholar
  100. 179.
    Ziegler F (1995) Mechanics of solids and fluids, 2nd edn. Mechanical engineering series. Springer, Vienna CrossRefGoogle Scholar
  101. 182.
    Zubov L (1982) Methods of nonlinear elasticity theory in shell theory. Izd Rostov Univ, Rostov-on-Don (in Russian) Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Yury Vetyukov
    • 1
  1. 1.Institute of Technical MechanicsJohannes Kepler UniversityLinzAustria

Personalised recommendations