Skip to main content

Computer estimation of plastic strain localization and failure for large strain rates using viscoplasticity

  • Chapter
Constitutive Relations under Impact Loadings

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 552))

  • 1638 Accesses

Abstract

The problem of modelling extreme dynamic events for metallic materials including strain rates over 107 s-1 and temperatures reaching melting point is still vivid in theoretical, applied and computational mechanics. Such thermomechanical processes are highly influenced by elasto-viscoplastic wave effects (their propagation and interaction) and varying initial anisotropy caused by existing defects in metals structure like microcracks, microvoids, mobile and immobile dislocations densities being together a cause of overall induced anisotropy during deformation (from the point of view of meso-macro continuum mechanics approach). It should be emphasised, that the most reliable way for estimation of such processes needs nowadays a complex phenomenological models due to limitations of current experimental techniques (it is still not possible to measure the evolution of crucial quantities e.g. temperature for extreme dynamic processes) and computational capabilities.

Within this document we consider recent achievements of Perzyna's type viscoplasticity theory for metallic materials accounting for anisotropic description of damage suitable for modelling plastic strain localization and failure for large strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Abaqus. Abaqus Version 6.12 Theory Manual. 2012.

    Google Scholar 

  • R.K. Abu Al-Rub and G.Z. Voyiadjis. A finite strain plastic-damage model for high velocity impact using combined viscosity and gradient localization limiters: Part I - theoretical formulation. International Journal of Damage Mechanics, 15(4):293-334, 2006.

    Google Scholar 

  • J.K. Dienes. On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica, 32:217-232, 1979.

    Google Scholar 

  • W. Dornowski. Influence of finite deformations on the growth mechanism of microvoids contained in structural metals. Archives of Mechanics, 51 (1):71-86, 1999.

    Google Scholar 

  • W. Dornowski and P. Perzyna. Analysis of the influence of various effects on cycle fatigue damage in dynamic process. Archive of Applied Mechanics, 72:418-438, 2002.

    Google Scholar 

  • W. Dornowski and P. Perzyna. Numerical investigation of localized fracture phenomena in inelastic solids. Foundations of Civil and Environmental Engineering, 7:7%116, 2006.

    Google Scholar 

  • M.K. Duszek-Perzyna and P. Perzyna. Analysis of the influence of digerent eflects on criteria for adiabatic shear band localization in inelastic solids, volume 50, chapter Material Instabilities: Theory and Applications. ASME, New York, 1994.

    Google Scholar 

  • A. Glema. Analysis of wave nature in plastic strain localization in solids, volume 379 of Rozprawy. Publishing House of Poznan University of Technology, 2004. (in Polish).

    Google Scholar 

  • A. Glema, T. Lodygowski, W. Sumelka, and P. Perzyna. The numerical analysis of the intrinsic anisotropic microdamage evolution in elastoviscoplastic solids. International Journal of Damage Mechanics, 18(3): 205-231, 2009.

    Google Scholar 

  • A. Glema, T. Lodygowski, and W. Sumelka. Towards the modelling of an anisotropic solids. Computational Methods in Science and Technology, 16(1):73-84, 2010a.

    Google Scholar 

  • A. Glema, T. Lodygowski, and W. Sumelka. Nowacki's double shear test in the framework of the anisotropic thermo-elast~vicsoplasticmaterial model. Journal of Theoretical and Applied Mechanics, 48(4):973-1001, 2010b.

    Google Scholar 

  • H.A. Grebe, H.-R. P&, and Meyers M.A. Adiabatic shear localization in titanium and Ti-6 pct A1-4 pct V alloy. Metallurgical and Materials Transactions A, 16(5):761-775, 1985.

    Google Scholar 

  • A.E. Green and P.M. Naghdi. A general theory of an elastic-plastic continuum. Archive for Rational Mechanics and Analysis, 18:251-281, 1965.

    Google Scholar 

  • R. Hill. Aspects of invariance in solid mechanics. Advances in Applied Mechanics, 18:l-75, 1978.

    Google Scholar 

  • G.A. Holzapfel. Nonlinear Solid Mechanics - A Continuum Approach for Engineering. Wiley, 2000.

    Google Scholar 

  • J.R. Klepaczko. Constitutive relations in dynamic plasticity, pure metals and alloys. Advances in constitutive relations applied in computer codes. CISM, Udine, Italy, July 23-27 2007.

    Google Scholar 

  • Th. Lehmann. Anisotrope plastische Formanderungen. Romanian J. Tech. Sci. Appl. Mech., 17:1077-1086, 1972.

    Google Scholar 

  • P. Longere, A. Dragon, H. Trumel, and X. Deprince. Adiabatic shear banding-induced degradation in thermo-elastic/viscoplastic material under dynamic loading. International Journal of Impact Engineering, 32: 285-320, 2005.

    Google Scholar 

  • J.E. Marsden and T.J.H Hughes. Mathematical Foundations of Elasticity. Prentice-Hall, New Jersey, 1983.

    Google Scholar 

  • J.C. Nagtegaal and J.E. de Jong. Some aspects of non-isotropic workhardening in finite strain plasticity. In Lee E.H. and Mallet R.L., editors, Proceedings of the workshop on plasticity of metals at finite strain: theory, experiment and computation, pages 65-102. Stanford University, 1982.

    Google Scholar 

  • R. Narayanasamy, N.L. Parthasarathi, and C.S. Narayanan. Effect of microstructure on void nucleation and coalescence during forming of three different HSLA steel sheets under different stress conditions. Materials and Design, 30:1310-1324, 2009.

    Google Scholar 

  • S. Nemat-Nasser and W.-G. Guo. Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mechanics of Materials, 37: 379-405, 2005.

    Google Scholar 

  • J.A. Nemes and J. Eftis. Several features of a viscoplastic study of plateimpact spallation with multidimensional strain. Computers and Structures, 38(3):317-328, 1991.

    Google Scholar 

  • J.A. Nemes and J. Eftis. Constitutive modelling of the dynamic fracture of smooth tensile bars. International Journal of Plasticity, 9(2):243-270, 1993.

    Google Scholar 

  • T. Lodygowski. Theoretical and numerical aspects of plastic strain localization, volume 312 of D.Sc. Thesis. Publishing House of Poznan University of Technology, 1996.

    Google Scholar 

  • T. Lodygowskiand P. Perzyna. Localized fracture of inelastic polycrystalline solids under dynamic loading process. International Journal Damage Mechanics, 6:364-407, 1997a.

    Google Scholar 

  • T. Lodygowski and P. Perzyna. Numerical modelling of localized fracture of inelastic solids in dynamic loading process. International Journal for Numerical Methods in Engineering, 40:4137-4158, 199713.

    Google Scholar 

  • T. Lodygowski, A. Glema, and W. Sumelka. Anisotropy induced by evolution of microstructure in ductile material. In 8th World Congress on Computational Mechanics (WCCMt?), 5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008), Venice, Italy, June 30 - July 5 2008.

    Google Scholar 

  • T. Lodygowski, A. Rusinek, T. Jankowiak, and W. Sumelka. Selected topics of high speed machining analysis. Engineering Transactions, 60(1):69- 96, 2012.

    Google Scholar 

  • R.B. Pscherski, W.K. Nowacki, Z. Nowak, and P Perzyna. Effect of strain rate on ductile fracture. a new methodology. In Workshop, Dynamic Behaviour of Materials, In memory of our Friend and Colleague Prof. J.R. Klepaczko, pages 65-73, Metz, France, May 13-15 2009.

    Google Scholar 

  • P. Perzyna. The constitutive equations for rate sensitive plastic materials. Quarterly of Applied Mathematics, 20:321-332, 1963.

    Google Scholar 

  • P. Perzyna. Fundamental problems in viscoplasticity. Advances in Applied Mechanics, 9:243-377, 1966.

    Google Scholar 

  • P. Perzyna. Termodynamika materiaFdw niesprciystych. PWN, Warszawa, 1978. (in Polish).

    Google Scholar 

  • P. Perzyna. Internal state variable description of dynamic fracture of ductile solids. International Journal of Solids and Structures, 22:797-818, 1986a.

    Google Scholar 

  • P. Perzyna. Constitutive modelling for brittle dynamic fracture in dissipative solids. Archives of Mechanics, 38:725-738, 198613.

    Google Scholar 

  • P. Perzyna. Instability phenomena and adiabatic shear band localization in thermoplastic flow process. Acta Mechanica, 106:173-205, 1994.

    Google Scholar 

  • P. Perzyna. Constitutive modelling of dissipative solids for localization and fracture. In Perzyna P., editor, Localization and fracture phenomena in inelastic solids, chapter 3, pages 99-241. Springer, 1998. (CISM course and lectures - No.386).

    Google Scholar 

  • P. Perzyna. The thermodynamical theory of elasto-viscoplasticity. Engineering Transactions, 53:235-316, 2005.

    Google Scholar 

  • P. Perzyna. The thermodynamical theory of elasto-viscoplasticity accounting for microshear banding and induced anisotropy effects. Mechanics, 27(1):25-42, 2008.

    Google Scholar 

  • A. Rusinek and J.R. Klepaczko. Experiments on heat generated during plastic deformation and stored energy for trip steels. Materials and Design, 30(1):35-48, 2009.

    Google Scholar 

  • Cz. Rymarz. Mechanika oirodkdw ciqgtych. PWN, Warszawa, 1993. (in Polish).

    Google Scholar 

  • L. Seaman, D.R. Curran, and D.A. Shockey. Computational models for ductile and brittle fracture. Journal of Applied Physics, 47(11):4814- 4826, 1976.

    Google Scholar 

  • S. Shima and M. Oyane. Plasticity for porous solids. International Journal of Mechanical Sciences, 18:285-291, 1976.

    Google Scholar 

  • J-H Song, H. Wang, and T. Belytschko. A comparative study on finite element methods for dynamic fracture. Computational Mechanics, 42: 239-250, 2008.

    Google Scholar 

  • W. Sumelka. The Constitutive Model of the Anisotropy Evolutionfor Metals with Microstructural Defects. Publishing House of Poznan University of Technology, Poznari, Poland, 2009.

    Google Scholar 

  • W. Sumelka. The role of the covariance in continuum damage mechanics. ASCE Journal of Engineering Mechanics, 2013. (DOI:10.1061/(ASCE)EM.1943-7889.0000600).

    Google Scholar 

  • W. Sumelka and A. Glema. The evolution of microvoids in elastic solids. In 17th International Conference on Computer Methods in Mechanics CMM-2007, pages 347-348, L6di-Spala, Poland, June 19-22 2007.

    Google Scholar 

  • W. Sumelka and T. Lodygowski. The influence of the initial microdamage anisotropy on macrodamage mode during extremely fast thermomechanical processes. Archive of Applied Mechanics, 81(12):1973-1992, 2011.

    Google Scholar 

  • W. Sumelka and T. Lodygowski. Reduction of the number of material parameters by ann approximation. Computational Mechanics, 2013a. (DOI: 10.1007/s00466-012-0812-9).

    Google Scholar 

  • W. Sumelka and T. Lodygowski. Thermal stresses in metallic materials due to extreme loading conditions. ASME Journal of Engineering Materials and Technology, 2013b. (DOI: 10.1115/1.4023777).

    Google Scholar 

  • D. Tikhomirov, R. Niekamp, and E. Stein. On three-dimensional microcrack density distribution. ZAMM - Journal of Applied Mathematics and Mechanics, 81(1):3-16, 2001.

    Google Scholar 

  • G.Z. Voyiadjis and R.K. Abu Al-Rub. A finite strain plastic-damage model for high velocity impacts using combined viscosity and gradient localization limiters: Part I1 - numerical aspects and simulations. International Journal of Damage Mechanics, 15(4):335-373, 2006.

    Google Scholar 

  • H. Xiao, O.T. Bruhns, and A. Meyers. Logarithmic strain, logarithmic spin and logarithmic rare. Acta Mechanica, 124:8%105, 1997a.

    Google Scholar 

  • H. Xiao, O.T. Bruhns, and A. Meyers. Hypo-elasticity model based upon the logarithmic stress rate. Journal of Elasticity, 47:5148, 199713.

    Google Scholar 

  • H. Xiao, O.T. Bruhns, and A. Meyers. Strain rates and material spin. Journal of Elasticity, 52:l-41, 1998.

    Google Scholar 

  • S. Zaremba. Sur une forme perfectionke de la thkorie de la relaxation. Bull. Int. Acad. Sci. Cracovie, pages 594414, 1903.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 CISM, Udine

About this chapter

Cite this chapter

Łodygowski, T., Sumelka, W. (2014). Computer estimation of plastic strain localization and failure for large strain rates using viscoplasticity. In: Łodygowski, T., Rusinek, A. (eds) Constitutive Relations under Impact Loadings. CISM International Centre for Mechanical Sciences, vol 552. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1768-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1768-2_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1767-5

  • Online ISBN: 978-3-7091-1768-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics