Advertisement

Anatomisches Korrelat der vertikalen Otolithenwahrnehmung: Topodiagnostische Erkenntnisse vom Hirnstamm bis zum Kortex

Conference paper
  • 1.2k Downloads

Zusammenfassung

Die intakte vertikale Wahrnehmung ist eine wichtige Voraussetzung für unsere Fähigkeit des aufrechten Gehens. Diese Fähigkeit ist multisensorisch, wobei der Signalverarbeitung der Otolithen eine dominante Rolle zukommt. Moderne Läsionsmethoden und funktionelle Bildgebungsdaten konnten zeigen, dass sowohl Strukturen im Kleinhirn, Hirnstamm und Thalamus als auch supratentorielle Regionen wie der insuläre Kortex – Strukturen eines vestibulären Netzwerks – an der vestibulär dominierten vertikalen Wahrnehmung beteiligt sind. Dieser Übersichtsartikel beschreibt unseren aktuellen Kenntnisstand über die anatomischen Regionen und Mechanismen, die eine intakte vestibuläre vertikale Wahrnehmung bedingen unter Berücksichtigung aktueller struktureller Läsions- und funktioneller Bildgebungsdaten. Auch wenn es uns mittlerweile möglich ist, spezifische Strukturen einer gestörten Otolithenverarbeitung zu benennen, sind die Mechanismen der vertikalen Wahrnehmungsfunktion noch immer nicht vollständig verstanden.

Literatur

  1. Baier B, Dieterich M (2009) Ocular tilt reaction – a clinical sign of cerebellar infections? Neurology 72:572–573PubMedCrossRefGoogle Scholar
  2. Baier B, Bense S, Dieterich M (2008) Are signs of ocular tilt reaction in patients with cerebellar lesions mediated by the dentate nucleus? Brain 131(6):1445–1454. doi:10.1093/brain/awn086PubMedCrossRefGoogle Scholar
  3. Baier B, Thömke F, Wilting J, Heinze C, Geber C, Dieterich M (2012a) A pathway in the brainstem for roll-tilt of the subjective visual vertical: Evidence from a lesion-behavior mapping study. Journal of Neuroscience 32:14854–14858PubMedCrossRefGoogle Scholar
  4. Baier B, Suchan J, Karnath HO, Dieterich M (2012b) Neural correlates of disturbed perception of verticality. Neurology 78:728–735PubMedCrossRefGoogle Scholar
  5. Barra J, Marquer A, Joassin R, Raymond C, Metge L, Chauvineau V, Pérennou D (2010) Humans use internal models to construct and update sense of verticality. Brain 133:3552–3563PubMedCrossRefGoogle Scholar
  6. Brandt T, Dieterich M (1994) Vestibular syndromes in the roll plane: Topographic diagnosis from brainstem to cortex. Ann Neurol 36:337–347PubMedCrossRefGoogle Scholar
  7. Brandt T, Dieterich M, Danek A (1994) Vestibular cortex lesions affect the perception of verticality. Ann Neurol 35:403–412PubMedCrossRefGoogle Scholar
  8. Bixenman WW, von Noorden GK (1982) Apparent foveal displacement in normal subjects and in cyclotropia. Ophthalmol 89:58–62CrossRefGoogle Scholar
  9. Bronstein AM, Yardley L, Moore AP, Cleeves L (1996) Visually and posturally mediated tilt illusion in Parkinson’s disease and in labyrinthine defective subjects. Neurology 47:651–656PubMedCrossRefGoogle Scholar
  10. Büttner U, Büttner UW (1978) Parietal cortex area 2 V neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation. Brain Res 153:392–397PubMedCrossRefGoogle Scholar
  11. Büttner U, Henn V (1976) Thalamic unit activity in the alert monkey during natural vestibular stimulation. Brain Res 103:127–132PubMedCrossRefGoogle Scholar
  12. Deecke L, Schwarz DWF, Fredrickson JM (1974) Nucleus ventroposterior inferior (VPI) as the thalamic relay in the rhesus monkey. I. Field potential investigation. Exp Brain Res 20:88–100PubMedCrossRefGoogle Scholar
  13. Dieterich M, Brandt T (1992) Wallenberg’s syndrome: lateropulsion, cyclorotation, and subjective visual vertical in thirty-six patients. Ann Neurol 31:399–408PubMedCrossRefGoogle Scholar
  14. Dieterich M, Brandt T (1993a) Ocular torsion and tilt of subjective visual vertical are sensitive brainstem signs. Ann Neurol 33:292–299PubMedCrossRefGoogle Scholar
  15. Dieterich M, Brandt T (1993b) Thalamic infarctions: differential effects on vestibular function in the roll plane (35 patients). Neurology 43:1732–1740PubMedCrossRefGoogle Scholar
  16. Dieterich M, Brandt T (2008) Functional brain imaging of peripheral and central vestibular disorders. Brain 131:2538–2552PubMedCrossRefGoogle Scholar
  17. Dieterich M, Bartenstein P, Spiegel S, Bense S, Schwaiger M, Brandt T (2005) Thalamic infarctions cause side-specific suppression of vestibular cortex activations. Brain 128:2052–2067PubMedCrossRefGoogle Scholar
  18. Guldin WO, Grüsser OJ (1996) The anatomy of the vestibular cortices of primates. In: Collard M, Jeannerod M, Christen Y (Hrsg) Le cortex vestibulaire. Editions IRVINN. Ipsen, Paris, S 17–26Google Scholar
  19. Halmagyi GM, Gresty MA, Gibson WP (1979) Ocular tilt reaction with peripheral vestibular lesion. Ann Neurol 6:80–83PubMedCrossRefGoogle Scholar
  20. Halmagyi GM, Brandt T, Dieterich M, Curthoys IS, Stark RJ, Hoyt WF (1990) Tonic contraversive ocular tilt reaction due to unilateral meso-diencephalic lesion. Neurology 40:1503–1539PubMedCrossRefGoogle Scholar
  21. Karnath HO, Dieterich M (2006) Spatial neglect: a vestibular disorder? Brain 129:293–305PubMedCrossRefGoogle Scholar
  22. Karnath HO, Ferber S, Dichgans J (2000) The origin of contraversive pushing. Evidence for a second graviceptive system in humans. Neurology 55:1298–1304PubMedCrossRefGoogle Scholar
  23. Kerkhoff G, Zoelch C (1998) Disorders of visuospatial orientation in the frontal plane in patients with visual neglect following right or parietal lesions. Exp Brain Res 122:108–120PubMedCrossRefGoogle Scholar
  24. Klam F, Graf W (2003a) Vestibular response kinematics in posterior parietal cortex neurons of macaque monkeys. Eur J Neurosci 18:995–1010PubMedCrossRefGoogle Scholar
  25. Klam F, Graf W (2003b) Vestibular signals of posterior parietal cortex neurons during active and passive head movements in macaque monkeys. Ann N Y Acad Sci 1004:271–282PubMedCrossRefGoogle Scholar
  26. Lackner JR, DiZio P (2005) Vestibular, proprioceptive, and haptic contributions to spatial integration. Annu Rev Psychol 56:115–147PubMedCrossRefGoogle Scholar
  27. Lee H, Sohn SI, Cho YW, Lee SR, Ahn BH, Park BR, Baloh RW (2006) Cerebellar infarction presenting isolated vertigo: frequency and vascular topographical patterns. Neurology 67:1178–1183PubMedCrossRefGoogle Scholar
  28. Leigh RJ, Zee DS (2006) The neurology of eye movements, 4. Aufl. Oxford University Press, New York, OxfordGoogle Scholar
  29. Mossman S, Halmagyi GM (1997) Partial ocular tilt reaction due to unilateral cerebellar lesion. Neurology 49:491–493PubMedCrossRefGoogle Scholar
  30. Mittelstaedt H (1992) Somatic versus vestibular gravity reception in man. Ann NY Acad Sci 656:124–139PubMedCrossRefGoogle Scholar
  31. Mittelstaedt H (1998) Origin and processing of postural information. Neurosci Biobehav Rev 22:473–478PubMedCrossRefGoogle Scholar
  32. Pérennou DA, Mazibrada G, Chauvineau V, Greenwood R, Rothwell J, Gresty MA, Bronstein AM (2008) Lateropulsion, pushing and verticality perception in hemisphere stroke: a causal relationship? Brain 131:2401–2413PubMedCrossRefGoogle Scholar
  33. Sans A, Raymond J, Marty R (1970) Response thalamiques et corticales a la stimulation electrique du nerf vestibulaire chez le chat. Exp Brain Res 10:265–275PubMedCrossRefGoogle Scholar
  34. Sharpe JA (2003) What’s up, doc? Altered perception of the haptic, postural, and visual vertical. Neurology 61:1172–1173PubMedCrossRefGoogle Scholar
  35. Tarnutzer AA, Bockisch CJ, Straumann D (2010) Roll-dependent modulation of the subjective visual vertical: contributions of head- and trunk-based signals. J Neurophysiol 103:934–941PubMedCrossRefGoogle Scholar
  36. Westheimer G, Blair SM (1975) The ocular tilt reaction – a brainstem oculomotor routine. Invest Ophthalmol 14:833–839PubMedGoogle Scholar
  37. Yardley L (1990) Contribution of somatosensory information to perception of the visual vertical with body tilt and rotating visual field. Percept Psychophys 48:131–134PubMedCrossRefGoogle Scholar
  38. Yelnik AP, Lebreton FO, Bonan IV, Colle FM, Meurin FA, Guichard JP, Vicaut E (2002) Perception of verticality after recent Cerebral hemispheric stroke. Stroke 33:2247–2253PubMedCrossRefGoogle Scholar
  39. Zwergal A, Cnyrim C, Arbusow V, Glaser M, Fesl G, Brandt T, Strupp M (2008a) Unilateral INO is associated with ocular tilt reaction in pontomesencephalic lesions: INO plus. Neurology 71:590–593CrossRefGoogle Scholar
  40. Zwergal A, Büttner-Ennever J, Brandt T, Strupp M (2008b) An ipsilateral vestibulothalamic tract adjacent to the ML in humans. Brain 131:2928–2935PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Klinik für NeurologieUniversitätsmedizin der Johannes Gutenberg-Universität MainzMainzDeutschland
  2. 2.Klinik und Poliklinik für NeurologieLudwig-Maximilians-Universität München, Klinikum GroßhadernMünchenDeutschland

Personalised recommendations