Skip to main content

The Role of Neuropilin-1/Semaphorin 3A Signaling in Lymphatic Vessel Development and Maturation

  • Chapter
  • First Online:
Book cover Developmental Aspects of the Lymphatic Vascular System

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 214))

Abstract

During development, the lymphatic and the blood vascular system form highly branched networks that show extensive architectural similarities with the peripheral nervous system. Increasing evidence suggests that the vascular and the nervous systems share signaling pathways to overcome common challenges such as guidance of growth and patterning. Semaphorins, a large group of proteins originally identified as axon guidance molecules with repelling function, and their receptors, neuropilins and plexins, have recently also been implicated in vascular development. Here, we summarize the role of semaphorins and their receptors in angiogenesis and lymphangiogenesis, with an emphasis on neuropilin-1/semaphorin 3A interactions in lymphatic vessel maturation and valve formation. Understanding the basic principles of lymphatic vessel development and maturation might facilitate the development of therapies for the treatment of human diseases associated with lymphedema.

* Equally contributing authors. The authors declare no conflicts of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, R. H., & Eichmann, A. (2010). Axon guidance molecules in vascular patterning. Cold Spring Harbor Perspectives in Biology, 2(5), a001875.

    Article  PubMed  Google Scholar 

  • Appleton, B. A., Wu, P., Maloney, J., Yin, J., Liang, W.-C., Stawicki, S., et al. (2007). Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. EMBO Journal, 26(23), 4902–4912.

    Article  PubMed  CAS  Google Scholar 

  • Bates, D., Taylor, G. I., Minichiello, J., Farlie, P., Cichowitz, A., Watson, N., et al. (2003). Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1. Developmental Biology, 255(1), 77–98.

    Article  PubMed  CAS  Google Scholar 

  • Behar, O., Golden, J. A., Mashimo, H., Schoen, F. J., Fishman, M. C. (1996). Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature, 383(6600), 525–528.

    Article  PubMed  CAS  Google Scholar 

  • Bouvree, K., Brunet, I., Del Toro, R., Gordon, E., Prahst, C., Cristofaro, B., et al. (2012). Semaphorin3A, neuropilin-1, and plexinA1 are required for lymphatic valve formation. Circulation Research, 111(4), 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P. (2003). Blood vessels and nerves: Common signals, pathways and diseases. Nature Reviews Genetics, 4(9), 710–720.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Bagri, A., Zupicich, J. A., Zou, Y., Stoeckli, E., Pleasure, S. J., et al. (2000). Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron, 25(1), 43–56.

    Article  PubMed  Google Scholar 

  • Chen, H., Chédotal, A., He, Z., Goodman, C. S., & Tessier-Lavigne, M. (1997). Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron, 19(3), 547–559.

    Article  PubMed  CAS  Google Scholar 

  • Feiner, L., Webber, A. L., Brown, C. B., Lu, M. M., Jia, L., Feinstein, P., et al. (2001). Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development, 128(16), 3061–3070.

    PubMed  CAS  Google Scholar 

  • Gerhardt, H., Ruhrberg, C., Abramsson, A., Fujisawa, H., Shima, D., & Betsholtz, C. (2004). Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Developmental Dynamics, 231(3), 503–509.

    Article  PubMed  CAS  Google Scholar 

  • Giger, R. J., Cloutier, J. F., Sahay, A., Prinjha, R. K., Levengood, D. V., Moore, S. E., et al. (2000). Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron, 25(1), 29–41.

    Article  PubMed  CAS  Google Scholar 

  • Gitler, A. D., Lu, M. M., & Epstein, J. A. (2004). PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Developmental Cell, 7(1), 107–116.

    Article  PubMed  CAS  Google Scholar 

  • Gu, C., & Giraudo, E. (2013). The role of semaphorins and their receptors in vascular development and cancer. Experimental Cell Research, 319(9), 1306–1316.

    Article  PubMed  CAS  Google Scholar 

  • Gu, C., Limberg, B. J., Whitaker, G. B., Perman, B., Leahy, D. J., Rosenbaum, J. S., et al. (2002). Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. Journal of Biological Chemistry, 277(20), 18069–18076.

    Article  PubMed  CAS  Google Scholar 

  • Gu, C., Rodriguez, E. R., Reimert, D. V., Shu, T., Fritzsch, B., Richards, L. J., et al. (2003). Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Developmental Cell, 5(1), 45–57.

    Article  PubMed  CAS  Google Scholar 

  • Gu, C., Yoshida, Y., Livet, J., Reimert, D. V., Mann, F., Merte, J., et al. (2005). Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science, 307(5707), 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Guttmann-Raviv, N., Shraga-Heled, N., Varshavsky, A., Guimaraes-Sternberg, C., Kessler, O., & Neufeld, G. (2007). Semaphorin-3A and semaphorin-3F work together to repel endothelial cells and to inhibit their survival by induction of apoptosis. Journal of Biological Chemistry, 282(36), 26294–26305.

    Article  PubMed  CAS  Google Scholar 

  • Herzog, Y., Kalcheim, C., Kahane, N., Reshef, R., & Neufeld, G. (2001). Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins. Mechanisms of Development, 109(1), 115–119.

    Article  PubMed  CAS  Google Scholar 

  • Hota, P. K., & Buck, M. (2012). Plexin structures are coming: Opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cellular and Molecular Life Sciences, 69(22), 3765–3805.

    Article  PubMed  CAS  Google Scholar 

  • Jurisic, G., Maby-El Hajjami, H., Karaman, S., Ochsenbein, A. M., Alitalo, A., Siddiqui, S. S., et al. (2012). An unexpected role of semaphorin3A/neuropilin-1 signaling in lymphatic vessel maturation and valve formation. Circulation Research, 111(4), 426–436.

    Article  PubMed  CAS  Google Scholar 

  • Karpanen, T., Heckman, C. A., Keskitalo, S., Jeltsch, M., Ollila, H., Neufeld, G., et al. (2006). Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB Journal, 20(9), 1462–1472.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, T., Kitsukawa, T., Bekku, Y., Matsuda, Y., Sanbo, M., Yagi, T., et al. (1999). A requirement for neuropilin-1 in embryonic vessel formation. Development, 126(21), 4895–4902.

    PubMed  CAS  Google Scholar 

  • Kim, J., Oh, W.-J., Gaiano, N., Yoshida, Y., & Gu, C. (2011). Semaphorin 3E-Plexin-D1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism. Genes and Development, 25(13), 1399–1411.

    Article  PubMed  CAS  Google Scholar 

  • Kitsukawa, T., Shimono, A., Kawakami, A., Kondoh, H., & Fujisawa, H. (1995). Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development, 121(12), 4309–4318.

    PubMed  CAS  Google Scholar 

  • Larrivée, B., Freitas, C., Suchting, S., Brunet, I., & Eichmann, A. (2009). Guidance of vascular development: Lessons from the nervous system. Circulation Research, 104(4), 428–441.

    Article  PubMed  Google Scholar 

  • Meadows, S. M., Fletcher, P. J., Moran, C., Xu, K., Neufeld, G., Chauvet, S., et al. (2012). Integration of repulsive guidance cues generates avascular zones that shape mammalian blood vessels. Circulation Research, 110(1), 34–46.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, F., Tanaka, M., Takahashi, T., Kalb, R. G., & Strittmatter, S. M. (1998). Neuropilin-1 extracellular domains mediate semaphorin D/III-induced growth cone collapse. Neuron, 21(5), 1093–1100.

    Article  PubMed  CAS  Google Scholar 

  • Oinuma, I., Ishikawa, Y., Katoh, H., & Negishi, M. (2004). The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science, 305(5685), 862–865.

    Article  PubMed  CAS  Google Scholar 

  • Pan, Q., Chanthery, Y., Liang, W.-C., Stawicki, S., Mak, J., Rathore, N., et al. (2007). Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell, 11(1), 53–67.

    Article  PubMed  CAS  Google Scholar 

  • Pellet-Many, C., Frankel, P., Jia, H., & Zachary, I. (2008). Neuropilins: Structure, function and role in disease. Biochemical Journal, 411(2), 211–226.

    Article  PubMed  CAS  Google Scholar 

  • Perala, N., Sariola, H., & Immonen, T. (2012). More than nervous: The emerging roles of plexins. Differentiation, 83(1), 77–91.

    Article  PubMed  Google Scholar 

  • Petrova, T. V., Karpanen, T., Norrmen, C., Mellor, R., Tamakoshi, T., Finegold, D., et al. (2004). Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nature Medicine, 10(9), 974–981.

    Article  PubMed  CAS  Google Scholar 

  • Prahst, C., Héroult, M., Lanahan, A. A., Uziel, N., Kessler, O., Shraga-Heled, N., et al. (2008). Neuropilin-1-VEGFR-2 complexing requires the PDZ-binding domain of neuropilin-1. Journal of Biological Chemistry, 283(37), 25110–25114.

    Article  PubMed  CAS  Google Scholar 

  • Raimondi, C., & Ruhrberg, C. (2013). Neuropilin signalling in vessels, neurons and tumours. Seminars in Cell and Developmental Biology, 24(3), 172–178.

    Article  PubMed  CAS  Google Scholar 

  • Sabine, A., Agalarov, Y., Maby-El Hajjami, H., Jaquet, M., Hagerling, R., Pollmann, C., et al. (2012). Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Developmental Cell, 22(2), 430–445.

    Article  PubMed  CAS  Google Scholar 

  • Serini, G., Valdembri, D., Zanivan, S., Morterra, G., Burkhardt, C., Caccavari, F., et al. (2003). Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature, 424(6947), 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, A., Mammoto, A., Italiano, J. E., Jr., Pravda, E., Dudley, A. C., Ingber, D. E., et al. (2008). ABL2/ARG tyrosine kinase mediates SEMA3F-induced RhoA inactivation and cytoskeleton collapse in human glioma cells. Journal of Biological Chemistry, 283(40), 27230–27238.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, S., Tsuji, T., Amagai, T., Takamatsu, T., & Fujisawa, H. (1987). Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies. Developmental Biology, 122(1), 90–100.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, T., Fournier, A., Nakamura, F., Wang, L. H., Murakami, Y., Kalb, R. G., et al. (1999). Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell, 99(1), 59–69.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, M., Masuda, T., Fukaya, M., Kataoka, H., Mishina, M., Yaginuma, H., et al. (2005). Identification and characterization of a novel member of murine semaphorin family. Genes to Cells, 10(8), 785–792.

    Article  PubMed  CAS  Google Scholar 

  • Vieira, J. M., Schwarz, Q., & Ruhrberg, C. (2007). Selective requirements for NRP1 ligands during neurovascular patterning. Development, 134(10), 1833–1843.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Yuan, L., Mak, J., Pardanaud, L., Caunt, M., Kasman, I., et al. (2010). Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. Journal of Cell Biology, 188(1), 115–130.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, L., Moyon, D., Pardanaud, L., Breant, C., Karkkainen, M. J., Alitalo, K., et al. (2002). Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development, 129(20), 4797–4806.

    PubMed  CAS  Google Scholar 

  • Zhou, Y., Gunput, R. A., & Pasterkamp, R. J. (2008). Semaphorin signaling: Progress made and promises ahead. Trends in Biochemical Sciences, 33(4), 161–170.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory has been supported by National Institutes of Health grant CA69184, Swiss National Science Foundation grants 3100A0_108207, 31003A_130627, and 310030B_147087, Commission of the European Communities grant LSHC-CT-2005-518178, Advanced European Research Council grant LYVICAM, the Leducq Foundation Transatlantic Network of Excellence grant Lymph Vessels in Obesity and Cardiovascular Disease, Oncosuisse, and Krebsliga Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Detmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Ochsenbein, A.M., Karaman, S., Jurisic, G., Detmar, M. (2014). The Role of Neuropilin-1/Semaphorin 3A Signaling in Lymphatic Vessel Development and Maturation. In: Kiefer, F., Schulte-Merker, S. (eds) Developmental Aspects of the Lymphatic Vascular System. Advances in Anatomy, Embryology and Cell Biology, vol 214. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1646-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1646-3_11

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1645-6

  • Online ISBN: 978-3-7091-1646-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics