Skip to main content

Construction of Statistically Similar Representative Volume Elements

  • Chapter
Plasticity and Beyond

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 550))

Abstract

In computational homogenization approaches the definition of a representative volume element (RVE) strongly influences the performance of the resulting numerical scheme, not only with respect to its physical accuracy but also with respect to the computational effort required. Here, we propose a method for the construction of statistically similar RVEs (SSRVEs), which are characterized by a reduced complexity compared to real microstructures and which therefore lead to computationally less expensive methods. These SSRVEs are obtained by minimizing a least-square functional taking into account differences of statistical measures that characterize the morphology of a real (target) microstructure and the SSRVE. By comparing the mechanical response in a series of numerical investigations it is shown that also the material behavior obtained by considering the real microstructure is well represented by the SSRVEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • M. Ambrozinski, K. Bzowski, L. Rauch, and M. Pietrzyk. Application of statistically similar representative volume element in numerical simulations of crash box stamping. 12:126–132, 2012.

    Article  Google Scholar 

  • D. Balzani, J. Schröder, and D. Brands. FE2-simulation of microheterogeneous steels based on statistically similar RVE’s. In Proceedings of the IUTAM Symposium on Variational Concepts with applications to the mechanics of materials, September 22-26, 2008, Bochum, Germany, 2009.

    Google Scholar 

  • D. Balzani, D. Brands, J. Schröder, and C. Carstensen. Sensitivity analysis of statistical measures for the reconstruction of microstructures based on the minimization of generalized least-square functionals. Technische Mechanik, 30:297–315, 2010.

    Google Scholar 

  • M. Beran. Statistical continuum theories. Wiley, 1968.

    MATH  Google Scholar 

  • D. Brands. Geometrical Modeling and Numerical Simulation of Heterogeneous Materials. Dissertation, Universität Duisburg-Essen, 2012.

    Google Scholar 

  • J.E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems Journal, 4(1):25–30, 1965. reprinted in Interactive Computer Graphics, Herbert Freeman ed., 1980, and Seminal Graphics: Pioneering Efforts That Shaped The Field, Rosalee Wolfe ed., ACM SIGGRAPH, 1998.

    Article  Google Scholar 

  • W.F. Brown. Solid mixture permettivities. Journal of Computational Physics, 23:1514–1517, 1955.

    Google Scholar 

  • M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dualphase steels and the effect of aging. Acta Materialia, 59:658–670, 2011.

    Article  Google Scholar 

  • P. Capek, V. Hejtmanek, L. Brabec, A. Zikanova, and M. Kocirik. Stochastic reconstruction of particulate media using simulated annealing: Improving pore connectivity. Transport in Porous Media, 76(2):179–198, 2009.

    Article  Google Scholar 

  • A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to derivative-free optimization, volume 8 of MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. ISBN 978-0-898716-68-9.

    Google Scholar 

  • A. Delesse. Procédé méchanique pour déterminer la composition des roches. Annales des Mines, 13:379, 1848.

    Google Scholar 

  • J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, and J.W.H. Liu. A supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications, 20(3):720–755, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  • H.E. Exner and H.P. Hougardy. Einführung in die quantitative Gefügeanalyse. Deutsche Gesellschaft für Metallkunde, 1986.

    Google Scholar 

  • A.A. Glagolev. Quantitative analysis with the microscope by the point method. Engineering and Mining Journal, 135:399, 1934.

    Google Scholar 

  • R. Hill. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids, 11:357–372, 1963.

    Article  MATH  Google Scholar 

  • Y. Jiao, F.H. Stillinger, and S. Torquato. A superior descriptor of random textures and its predictive capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(42):17634–17639, 2009.

    Article  Google Scholar 

  • S.O. Klinkel. Theorie und Numerik eines Volumen-Schalen-Elementes bei finiten elastischen und plastischen Verzerrungen. PhD thesis, Universität Fridericiana zu Karlsruhe, 2000.

    Google Scholar 

  • T.G. Kolda, R.M. Lewis, and V. Torczon. Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev., 45 (3):385–482 (electronic), 2003. ISSN 0036-1445.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Konrad, S. Zaefferer, and D. Raabe. Investigation of orientation gradients around a hard laves particle in a warm rolled Fe3Al-based alloy by a 3d EBSD-FIB technique. Acta Materialia, 54:1369–1380, 2006.

    Article  Google Scholar 

  • E. Kröner. Allgemeine Kontinuumstheorie der Versetzung und Eigenspannung. Archive of Rational Mechanics and Analysis, 4:273–334, 1960.

    Article  MATH  Google Scholar 

  • E. Kröner. Statistical continuum mechanics. In CISM Courses and Lectures, volume 92. Springer-Verlag, Wien, New-York, 1971.

    Google Scholar 

  • E.H. Lee. Elasto-plastic deformation at finite strains. Journal of Applied Mechanics, 36:1–6, 1969.

    Article  MATH  Google Scholar 

  • D.S. Li, M.A. Tschopp, M. Khaleel, and X. Sun. Comparison of reconstructed spatial microstructure images using different statistical descriptors. Computational Materials Science, 51:437–444, 2012.

    Article  Google Scholar 

  • B.L. Lu and S. Torquato. Lineal-path function for random heterogeneous materials. Physical Reviews A, 45:922–929, 1992.

    Article  Google Scholar 

  • M.M. Mäkelä and P. Neittaanmäki. Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific Publishing Co. Inc., 1992. ISBN 981-02-0773-5.

    Google Scholar 

  • C. Manwart, S. Torquato, and R. Hilfer. Stochastic reconstruction of sandstones. Physical Review E, 62:893–899, 2000.

    Article  Google Scholar 

  • G. Matheron. Random Sets and Integral Geometry. Wiley, New York, 1975.

    MATH  Google Scholar 

  • C. Miehe. Kanonische Modelle multiplikativer Elasto-Plastizität. Thermodynamische Formulierung und Numerische Implementation. 1993. Habilitationsschrift.

    Google Scholar 

  • C. Miehe and E. Stein. A canonical model of multiplicative elasto-plasticity formulation and aspects of the numerical implementation. European Journal of Mechanics, A/Solids, 11:25–43, 1992.

    Google Scholar 

  • C. Miehe, J. Schröder, and J. Schotte. Computational homogenization analysis in finite plasticity. simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering, 171:387–418, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Ohser and F. Mücklich. Statistical analysis of microstructures in materials science. J Wiley & Sons, 2000.

    MATH  Google Scholar 

  • J. Ohser and K. Schladitz. Image Processing and Analysis. Clarendon Press Oxford, 2006.

    Google Scholar 

  • D. Peric, D.R.J. Owen, and M.E. Honnor. A model for finite strain elastoplasticity based on logarithmic strains: Computational issues. Computer Methods in Applied Mechanics and Engineering, 94:35–61, 1992.

    Article  MATH  Google Scholar 

  • R. Piasecki. Microstructure reconstruction using entropic descriptors. Proceedings of the Royal Society of London, Series A : Mathematical, Physical and Engineering Science, 467:806–820, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  • G.L. Povirk. Incorporation of microstructural information into models of two-phase materials. Acta Metallurgica, 43/8:3199–3206, 1995.

    Article  Google Scholar 

  • J. Schröder. Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Instabilitäten. Bericht aus der Forschungsreihe des Instituts für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart, 2000. Habilitationsschrift.

    Google Scholar 

  • J. Schröder, D. Balzani, and D. Brands. Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions. Archive of Applied Mechanics, 81: 975–997, 2010.

    Article  Google Scholar 

  • J.C. Simo. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part i. continuum formulation. Computer Methods in Applied Mechanics and Engineering, 66:199–219, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  • J.C. Simo. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Computer Methods in Applied Mechanics and Engineering, 99:61–112, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  • J.C. Simo and C. Miehe. Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. Computer Methods in Applied Mechanics and Engineering, 96:133–171, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  • R.J.M. Smit, W.A.M. Brekelmans, and H.E.H. Meijer. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering, 155:181–192, 1998.

    Article  MATH  Google Scholar 

  • S. Torquato. Random heterogeneous materials. microstructure and macroscopic properties. Springer, 2002.

    Book  MATH  Google Scholar 

  • S. Torquato and B. Lu. Chord-length distribution function for two-phase random media. Physical Review E, 47:2950–2953, 1993.

    Article  Google Scholar 

  • S. Torquato, J.D. Beasley, and Y.C. Chiew. Two-point cluster function for continuum percolation. Journal of Computational Physics, 88:6540–6547, 1988.

    MathSciNet  Google Scholar 

  • G. Weber and L. Anand. Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoelastic solids. Computer Methods in Applied Mechanics and Engineering, 79:173–202, 1990.

    Article  MATH  Google Scholar 

  • E.R. Weibel. Stereological Methods, Vol. 2: Theoretical Foundations. Academic Press, London, New York, Toronto, Sydney, San Francisco, 1980.

    Google Scholar 

  • J. Zeman. Analysis of Composite Materials with Random Microstructure. PhD thesis, University of Prague, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Balzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 CISM, Udine

About this chapter

Cite this chapter

Balzani, D., Brands, D., Schröder, J. (2014). Construction of Statistically Similar Representative Volume Elements. In: Schröder, J., Hackl, K. (eds) Plasticity and Beyond. CISM International Centre for Mechanical Sciences, vol 550. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1625-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1625-8_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1624-1

  • Online ISBN: 978-3-7091-1625-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics