Variational modeling of microstructures in plasticity

Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 550)

Abstract

The analysis and simulation of microstructures in solids has gained crucial importance, virtue of the influence of all microstructural characteristics on a material’s macroscopic, mechanical behavior. In particular, the arrangement of dislocations and other lattice defects to particular structures and patterns on the microscale as well as the resultant inhomogeneous distribution of localized strain results in a highly altered stress-strain response. Energetic models predicting the mechanical properties are commonly based on thermodynamic variational principles. Modeling the material response in finite-strain crystal plasticity very often results in a nonconvex variational problem so that the minimizing deformation fields are no longer continuous but exhibit small-scale fluctuations related to probability distributions of deformation gradients to be calculated via energy relaxation. This results in fine structures which can be interpreted as the observed microstructures.

This manuscript is supposed to give an overview of the available methods and results in this field. We start by discussing the underlying variational principles for inelastic materials, derive evolution equations for internal variables, and introduce the concept of condensed energy. As a mathematical prerequisite we review the variational calculus of nonconvex potentials and the notion of relaxation. We use these instruments in order to study the initiation of plastic microstructures. Here we focus on a model of single-slip crystal plasticity. Afterward we move on to model the evolution of microstructures. We introduce the concept of essential microstructures and the corresponding relaxed energies and dissipation potentials, and derive evolution equations for microstructure parameters. We then present a numerical scheme by means of which the microstructure development can be computed, and show numerical results for particular examples in single- and double-slip plasticity. We discuss the influence of hardening and of slip system orientations in the present model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63, 337-403 (1977).CrossRefMATHGoogle Scholar
  2. Ball, J. M., and James, R. D.: Fine phase mixtures as minimizer of energy. Arch. Rat. Mech. Anal. 100, 13–52 (1987).MathSciNetCrossRefMATHGoogle Scholar
  3. Ball, J., James, R.:Proposed experimental tests of a theory of Dne microstructures and the 2-well problem. Philos. Trans. R. Soc. Lond. A 338, 389-450 (1992).CrossRefMATHGoogle Scholar
  4. Bartels, S., Carstensen, C., Hackl, K., Hoppe, U.: Effective relaxation for microstructure simulation: algorithms and applications. Comp. Meth. Appl. Mech. Eng. 193, 5143–5175 (2004).MathSciNetCrossRefMATHGoogle Scholar
  5. Bhattacharya, K.: Microstructure of martensite. Why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford (2003).Google Scholar
  6. Canadinc, D., Sehitoglu, H., Maier, H. J., Chumlyakov, Y. I.: Strain hardening behavior of aluminum alloyed Hadfield steel single crystals. Acta Mater. 53, 1831-1842 (2005).CrossRefGoogle Scholar
  7. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. A 458, 299–317 (2002).MathSciNetCrossRefMATHGoogle Scholar
  8. Carstensen, C., Conti, S., Orlando, A.: Mixed analytical-numerical relaxation in finite single-slip crystal plasticity. Continuum Mech. Thermodyn. 20, 275–301 (2008).MathSciNetCrossRefMATHGoogle Scholar
  9. Christian, J. W., Mahajan, S.: Deformation twinning. Progr. Mater. Sci. 39, 1–157 (1995).CrossRefGoogle Scholar
  10. Chu, C., James, R. D.: Analysis of microstructures in Cu-14.0%Al-3.9%Ni by energy minimization. Journal de Physique III – Colloque C8 5, 143–149 (1995).Google Scholar
  11. Conti, S., Ortiz, M.: Minimum principles for the trajectories of systems governed by rate problems. J. Mech. Phys. Solids 56, 1885–1904 (2008).MathSciNetCrossRefMATHGoogle Scholar
  12. Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Rat. Mech. Anal. 178, 125–148 (2005).MathSciNetCrossRefMATHGoogle Scholar
  13. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989).CrossRefMATHGoogle Scholar
  14. Dmitrieva, O., Dondl, P., Müller, S., Raabe, D., 2009. Lamination microstructure in shear deformed copper single crystals. Acta Mater. 57, 3439-3449.CrossRefGoogle Scholar
  15. Ericksen, J. L.: Equilibrium of bars. J. Elasticity 5, 191–201 (1975).MathSciNetCrossRefMATHGoogle Scholar
  16. Govindjee, S., Mielke, A., Hall, G.J.: The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis. J. Mech. Phys. Solids 51, 1–26 (2003).CrossRefGoogle Scholar
  17. Govindjee, S., Hackl, K., Heinen, R.: An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Cont. Mech. and Thermodyn. 18, 443–453 (2007).MathSciNetCrossRefMATHGoogle Scholar
  18. Hackl, K.: Generalized standard media and variational principles in classical and finite strain elastoplasticity. J. Mech. Phys. Solids 45, 667-688 (1997).MathSciNetCrossRefMATHGoogle Scholar
  19. Hackl, K.: Relaxed potentials and evolution equations. In: Gumbsch, P. (Ed.), Third International Conference on Multiscale Materials Modeling. Fraunhofer IRB Verlag (2006).Google Scholar
  20. Hackl, K., Fischer, F. D.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. Lond. A 464, 117-132 (2008).MathSciNetCrossRefMATHGoogle Scholar
  21. Hackl, K., Fischer, F. D., Svoboda, J.: A study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials. Proc. R. Soc. Lond. A 467, 1186–1196 (2011).MathSciNetCrossRefMATHGoogle Scholar
  22. Hackl, K., Heinen, R.: On the calculation of energy-minimizing phase fractions in shape memory alloys. Comput. Meth. Appl. Mech. Eng. 196, 2401–2412 (2007).MathSciNetCrossRefMATHGoogle Scholar
  23. Hackl, K., Heinen, R.: A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy. Continuum Mech. Thermodyn. 19, 499–510 (2008).MathSciNetCrossRefMATHGoogle Scholar
  24. Hackl, K., Heinen, R.: An upper bound to the free energy of n-variant polycrystalline shape memory alloys. J. Mech. Phys. Solids 56, 2832–2843 (2008).MathSciNetCrossRefMATHGoogle Scholar
  25. Hackl K., Hoppe U.: On the calculation of microstructures for inelastic materials using relaxed energies. In Miehe C. (Eds.), IUTAM Symposium on Computational Mechanics of Solid Materials at large Strains, Kluwer, 77–86 (2002).Google Scholar
  26. Variational modeling of shape memory alloys-an overview. Int. J. Mat. Res. 102, 643–651 (2011).Google Scholar
  27. Hackl, K., Kochmann, D. M.: Relaxed potentials and evolution equations for inelastic microstructures. In: Daya Reddy, B. (ed.), Theoretical, Computational and Modelling Aspects of Inelastic Media, IUTAM Bookseries, Springer, 27–39 (2008).CrossRefGoogle Scholar
  28. Hackl, K., Kochmann, D. M.: An incremental strategy for modeling laminate microstructures in finite plasticity – energy reduction, laminate orientation and cyclic behavior. In: de Borst, R., Ramm, E. (Eds.), Multiscale Methods in Computational Mechanics, Springer, 117–134 (2010).CrossRefGoogle Scholar
  29. Hackl, K., Schmidt-Baldassari, M., Zhang, W.: A micromechanical model for polycrystalline shape-memory alloys. Mat. Sci. Eng. A 378, 503–506 (2003).CrossRefGoogle Scholar
  30. Junker, P., Hackl, K.: Finite element simulations of poly-crystalline shape memory alloys based on a micromechanical model. Computational Mechanics 47, 505–517 (2011).MathSciNetCrossRefMATHGoogle Scholar
  31. Kochmann, D. M.: Mechanical Modeling of Microstructures in Elasto-Plastically Deformed Crystalline Solids. Ph.D. Thesis (2009). Ruhr-University Bochum, Germany.Google Scholar
  32. Kochmann, D. M., Hackl, K.: Time-continuous evolution of microstructures in finite plasticity. In: Hackl, K. (Ed.), Variational Concepts with Applications to the Mechanics of Materials, IUTAM Bookseries, Springer, 117–130 (2010).CrossRefGoogle Scholar
  33. Kochmann, D. M., Hackl, K.: Influence of hardening on the cyclic behavior of laminate microstructures in finite crystal plasticity. Tech. Mech. 30, 384–400 (2010).Google Scholar
  34. Kochmann, D. M., Hackl, K.: The evolution of laminates in finite plasticity: a variational approach. Continuum Mech. Thermodyn. 23, 63–85 (2011).MathSciNetCrossRefMATHGoogle Scholar
  35. Lambrecht, M., Miehe, C., Dettmar, J.: Energy relaxation of non-convex incremental stress potentials in a strain-softening elastic-plastic bar. Int. J. Sol. Struct. 40, 1369–1391 (2003).CrossRefMATHGoogle Scholar
  36. Lukáš, P., Kunz, L., Svoboda, M.: Stress-strain response and fatigue life of copper single crystals cyclically loaded with a positive mean stress. Mat. Sci. Eng. A 272, 31–37 (1999).CrossRefGoogle Scholar
  37. Miehe, C., Lambrecht, E., Gürses, E.: Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J. Mech. Phys. Solids 52, 2725–2769 (2004).MathSciNetCrossRefMATHGoogle Scholar
  38. Miehe, C., Schotte, J., Lambrecht, M.: Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J. Mech. Phys. Solids 50, 2123–2167 (2002).MathSciNetCrossRefMATHGoogle Scholar
  39. Mielke, A.: Finite elastoplasticity, Lie groups and geodesics on SL(d). In: Newton, P., Weinstein, A., Holmes, P. (Eds.), Geometry, Dynamics, and Mechanics. Springer, Berlin (2002).Google Scholar
  40. Mielke, A.: Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Comp. Meth. Appl. Mech. Eng. 193, 5095–5127 (2004).MathSciNetCrossRefMATHGoogle Scholar
  41. Mielke, A., Ortiz, M.: A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM: Control, Optimization and Calculus of Variations 14, 494–516 (2007).MathSciNetCrossRefGoogle Scholar
  42. Ortiz, M., Repetto, E. A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397–462 (1999).MathSciNetCrossRefMATHGoogle Scholar
  43. Simo, J. C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. I. Continuum formulation. Comput. Meth. Appl. Mech. Eng. 66, 199–219 (1988a).MathSciNetCrossRefMATHGoogle Scholar
  44. Simo, J. C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. II. Computational Aspects. Comput. Meth. Appl. Mech. Eng. 68, 1–31 (1988b).CrossRefMATHGoogle Scholar
  45. Truesdell, C., Noll, W.: The nonlinear field theories of mechanics. In: Flügge, S. (ed.), Encyclopedia of Physics III/3, Springer, Berlin (1965).Google Scholar
  46. Truskinovsky, L.: Finite Scale Microstructures in Nonlocal Elasticity. J. Elasticity 59, 319–355 (2000).MathSciNetCrossRefMATHGoogle Scholar
  47. Truskinovsky, L., Zanzotto, G.: Finite-scale microstructures and metastability in one-dimensional elasticity. Meccanica 30, 577–589 (1995).MathSciNetCrossRefMATHGoogle Scholar
  48. Young, L. C.: Lectures on the Calculus of Variations and Optimal Control Theory. AMS Chelsea Publications, New York (1980).Google Scholar

Copyright information

© CISM, Udine 2014

Authors and Affiliations

  • Klaus Hackl
    • 1
  • Ulrich Hoppe
    • 1
  • Dennis M. Kochmann
    • 2
  1. 1.Institut für Computational Engineering, Lehrstuhl für Mechanik – MaterialtheorieRuhr-Universität BochumBochumGermany
  2. 2.Graduate Aerospace LaboratoriesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations