The Holonomic Toolkit

Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)


This is an overview over standard techniques for holonomic functions, written for readers who are new to the subject. We state the definition for holonomy in a couple of different ways, including some concrete special cases as well as a more abstract and more general version. We give a collection of standard examples and state several fundamental properties of holonomic objects. Two techniques which are most useful in applications are explained in some more detail: closure properties, which can be used to prove identities among holonomic functions, and guessing, which can be used to generate plausible conjectures for equations satisfied by a given function.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 9th edn. Dover Publications, Inc., New York (1972)MATHGoogle Scholar
  2. 2.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge/New York (1999)Google Scholar
  3. 3.
    Beckermann, B., Labahn, G.: Fraction-free computation of matrix rational interpolants and matrix gcds. SIAM J. Matrix Anal. Appl. 22(1), 114–144 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bernstein, J.N.: The analytic continuation of generalized functions with respect to a parameter. Funct. Anal. Appl. 6(4), 26–40 (russian); 273–285 (english translation) (1972)Google Scholar
  5. 5.
    Bjork, J.E.: Rings of Differential Operators. North-Holland, Amsterdam/New York (1979)Google Scholar
  6. 6.
    Blümlein, J., Kauers, M., Klein, S., Schneider, C.: Determining the closed forms of the \(o(a_{s}^{3})\) anomalous dimension and Wilson coefficients from Mellin moments by means of computer algebra. Comput. Phys. Commun. 180(11), 2143–2165 (2009)ADSCrossRefMATHGoogle Scholar
  7. 7.
    Blümlein, J., Klein, S., Schneider, C., Stan, F.: A symbolic summation approach to Feynman integral calculus. J. Symb. Comput. 47(10), 1267–1289 (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Bostan, A., Kauers, M.: Automatic classification of restricted lattice walks. In: Proceedings of FPSAC’09, Hagenberg, pp. 201–215 (2009)Google Scholar
  9. 9.
    Bostan, A., Kauers, M., with an appendix by van Hoeij, M.: The complete generating function for Gessel walks is algebraic. Proc. AMS 138(9), 3063–3078 (2010)CrossRefMATHGoogle Scholar
  10. 10.
    Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theor. Comput. Sci. 157(1), 3–33 (1996)CrossRefMATHGoogle Scholar
  11. 11.
    Chen, S., Kauers, M.: Order-degree curves for hypergeometric creative telescoping. In: Proceedings of ISSAC’12, Grenoble, pp. 122–129. ACM (2012). ISBN 978-1-4503-1269-1Google Scholar
  12. 12.
    Chen, S., Kauers, M.: Trading order for degree in creative telescoping. J. Symb. Comput. 47(8), 968–995 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chudnovsky, D.V., Chudnovsky, G.V.: Computer algebra in the service of mathematical physics and number theory. In: Chudnovsky, D.V., Jenks, R.D. (eds.) Computers in Mathematics. Lecture Notes in Pure and Applied Mathematics, vol. 125, pp. 109–232. Dekker/Stanford University (1986). ISBN 0-8247-8341-7Google Scholar
  14. 14.
    Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discret. Math. 217, 115–134 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symb. Comput. 26, 187–227 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Chyzak, F., Kauers, M., Salvy, B.: A non-holonomic systems approach to special function identities. In: May, J. (ed.) Proceedings of ISSAC’09, Seoul, pp. 111–118. ACM (2009). ISBN 978-1-4503-1269-1Google Scholar
  17. 17.
    Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge/New York (2009)CrossRefMATHGoogle Scholar
  19. 19.
    Gerhold, S.: Combinatorial sequences: non-holonomicity and inequalities. Ph.D. thesis, RISC-Linz, Johannes Kepler Universität Linz (2005)Google Scholar
  20. 20.
    Hebisch, W., Rubey, M.: Extended Rate, more GFUN. J. Symb. Comput. 46(8), 889–903 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Jaroschek, M., Kauers, M., Chen, S., Singer, M.F.: Desingularization explains order-degree curves for Ore operators. Technical report 1301.0917, ArXiv (2013)Google Scholar
  22. 22.
    Kauers, M.: Fast solvers for dense linear systems. Nucl. Phys. B (Proc. Suppl.) 183, 245–250 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Kauers, M.: Guessing handbook. Technical report 09–07, RISC-Linz (2009)Google Scholar
  24. 24.
    Kauers, M.: A mathematica package for computing asymptotic expansions of solutions of p-finite recurrence equations. Technical report 11–04, RISC-Linz (2011)Google Scholar
  25. 25.
    Kauers, M., Paule, P.: The Concrete Tetrahedron. Springer, Wein/New York (2011)CrossRefMATHGoogle Scholar
  26. 26.
    Kauers, M., Zeilberger, D.: The computational challenge of enumerating high dimensional rook walks. Adv. Appl. Math. 47(4), 813–819 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Koutschan, C.: Advanced applications of the holonomic systems approach. Ph.D. thesis, RISC-Linz, Johannes Kepler Universität Linz (2009)Google Scholar
  28. 28.
    Koutschan, C.: HolonomicFunctions (User’s Guide). Technical report 10–01, RISC report series, University of Linz, Austria (2010). URL Google Scholar
  29. 29.
    Mallinger, C.: Algorithmic manipulations and transformations of univariate holonomic functions and sequences. Master’s thesis, Johannes Kepler University, Linz (1996)Google Scholar
  30. 30.
    Mezzarobba, M., Salvy, B.: Effective bounds for P-recursive sequences. J. Symb. Comput. 45(10), 1075–1096 (2010)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Salvy, B.: D-finiteness: algorithms and applications. In: Kauers, M. (ed.) Proceedings of ISSAC’05, Beijing, pp. 2–3. ACM (2005). ISBN 978-1-4503-1269-1. Invited talkGoogle Scholar
  32. 32.
    Salvy, B., Zimmermann, P.: Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw. 20(2), 163–177 (1994)CrossRefMATHGoogle Scholar
  33. 33.
    Sloane, N.J.: The on-line encyclopedia of integer sequences.
  34. 34.
    Stanley, R.P.: Differentiably finite power series. Eur. J. Comb. 1, 175–188 (1980)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Stanley, R.P.: Enumerative Combinatorics, Volume 2. Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  36. 36.
    van der Hoeven, J.: Fast evaluation of holonomic functions. Theor. Comput. Sci. 210(1), 199–216 (1999)CrossRefMATHGoogle Scholar
  37. 37.
    van der Hoeven, J.: Efficient accelero-summation of holonomic functions. J. Symb. Comput. 42(4), 389–428 (2007)CrossRefMATHGoogle Scholar
  38. 38.
    van der Poorten, A.: A proof that Euler missed… – Apéry’s proof of the irrationality for ζ(3). Math. Intell. 1, 195–203 (1979)CrossRefMATHGoogle Scholar
  39. 39.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge/New York (1999)MATHGoogle Scholar
  40. 40.
    Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and q) multisum/integral identities. Invent. Math. 108, 575–633 (1992)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Wimp, J., Zeilberger, D.: Resurrecting the asymptotics of linear recurrences. J. Math. Anal. Appl. 111, 162–176 (1985)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Zeilberger, D.: A holonomic systems approach to special function identities. J. Comput. Appl. Math. 32, 321–368 (1990)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Research Institute for Symbolic ComputationJohannes Kepler UniversityLinzAustria

Personalised recommendations