Skip to main content

Feynman Graphs

  • Chapter
  • First Online:
Computer Algebra in Quantum Field Theory

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

In these lectures I discuss Feynman graphs and the associated Feynman integrals. Of particular interest are the classes functions, which appear in the evaluation of Feynman integrals. The most prominent class of functions is given by multiple polylogarithms. The algebraic properties of multiple polylogarithms are reviewed in the second part of these lectures. The final part of these lectures is devoted to Feynman integrals, which cannot be expressed in terms of multiple polylogarithms. Methods from algebraic geometry provide tools to tackle these integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by cyclotomic polynomials. J. Math. Phys. 52, 102301 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  2. Argeri, M., Mastrolia, P.: Feynman diagrams and differential equations. Int. J. Mod. Phys. A22, 4375–4436 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bierenbaum, I., Weinzierl, S.: The massless two-loop two-point function. Eur. Phys. J. C32, 67–78 (2003)

    Article  ADS  Google Scholar 

  4. Bloch, S., Esnault, H., Kreimer, D.: On motives associated to graph polynomials. Commun. Math. Phys. 267, 181 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Blümlein, J.: Algebraic relations between harmonic sums and associated quantities. Comput. Phys. Commun. 159, 19–54 (2004)

    Article  ADS  MATH  Google Scholar 

  6. Blümlein, J., Broadhurst, D.J., Vermaseren, J.A.M.: The multiple zeta value data mine. Comput. Phys. Commun. 181, 582 (2010)

    Article  ADS  MATH  Google Scholar 

  7. Blümlein, J., Kurth, S.: Harmonic sums and mellin transforms up to two-loop order. Phys. Rev. D60, 014018 (1999)

    ADS  Google Scholar 

  8. Bogner, C., Weinzierl, S.: Feynman graph polynomials. Int. J. Mod. Phys. A25, 2585–2618 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  9. Borwein, J.M., Bradley, D.M., Broadhurst, D.J., Lisonek, P.: Special values of multiple polylogarithms. Trans. Am. Math. Soc. 353(3), 907 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Broadhurst, D.J., Fleischer, J., Tarasov, O.: Two loop two point functions with masses: asymptotic expansions and Taylor series, in any dimension. Z. Phys. C60, 287–302 (1993)

    ADS  Google Scholar 

  11. Brown, F.: The massless higher-loop two-point function. Commun. Math. Phys. 287, 925–958 (2008)

    Article  ADS  Google Scholar 

  12. Brown, F.: On the periods of some Feynman integrals. arXiv:0910.0114 [math.AG] (2009)

    Google Scholar 

  13. Chaiken, S.: A combinatorial proof of the all minors matrix tree theorem. SIAM J. Algebr. Discret. Methods 3, 319–329 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, W.K.: Applied Graph Theory, Graphs and Electrical Networks. North Holland, Amsterdam (1982)

    Google Scholar 

  15. Dodgson, C.L.: Condensation of determinants. Proc. R. Soc. Lond. 15, 150–155 (1866)

    Article  Google Scholar 

  16. Ecalle, J.: Ari/gari, la dimorphie et l’arithmétique des multizêtas: un premier bilan. Journal de Théorie des Nombres de Bordeaux 15, 411 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Transcendental Functions, vol. I. McGraw Hill, New York (1953)

    Google Scholar 

  18. Euler, L.: Meditationes circa singulare serierum genus. Novi Comment. Acad. Sci. Petropol. 20, 140 (1775)

    Google Scholar 

  19. Gehrmann, T., Remiddi, E.: Differential equations for two-loop four-point functions. Nucl. Phys. B580, 485–518 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  20. Gehrmann, T., Remiddi, E.: Two-loop master integrals for gamma* → 3 jets: the non- planar topologies. Nucl. Phys. B601, 287–317 (2001)

    Article  ADS  Google Scholar 

  21. Gehrmann, T., Remiddi, E.: Two-loop master integrals for gamma* → 3 jets: the planar topologies. Nucl. Phys. B601, 248–286 (2001)

    Article  ADS  Google Scholar 

  22. Goncharov, A.B.: Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett. 5, 497 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goncharov, A.B.: Multiple polylogarithms and mixed Tate motives. math.AG/0103059 (2001)

    Google Scholar 

  24. Guo, L., Keigher, W.: Baxter algebras and shuffle products. Adv. Math. 150, 117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hoffman, M.E.: Quasi-shuffle products. J. Algebr. Comb. 11, 49 (2000)

    Article  MATH  Google Scholar 

  26. Kotikov, A.V.: Differential equation method: the calculation of n point Feynman diagrams. Phys. Lett. B267, 123–127 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  27. Kotikov, A.V.: Differential equations method: new technique for massive Feynman diagrams calculation. Phys. Lett. B254, 158–164 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  28. Laporta, S., Remiddi, E.: Analytic treatment of the two loop equal mass sunrise graph. Nucl. Phys. B704, 349–386 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  29. Moch, S., Uwer, P.: Xsummer: transcendental functions and symbolic summation in form. Comput. Phys. Commun. 174, 759–770 (2006)

    Article  ADS  MATH  Google Scholar 

  30. Moch, S., Uwer, P., Weinzierl, S.: Nested sums, expansion of transcendental functions and multi-scale multi-loop integrals. J. Math. Phys. 43, 3363–3386 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Moon, J.: Some determinant expansions and the matrix-tree theorem. Discret. Math. 124, 163–171 (1994)

    Article  MATH  Google Scholar 

  32. Müller-Stach, S., Weinzierl, S., Zayadeh, R.: A second-order differential equation for the two-loop sunrise graph with arbitrary masses. Commun. Number Theory Phys. 6, 203–222 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Müller-Stach, S., Weinzierl, S., Zayadeh, R.: Picard-Fuchs equations for Feynman integrals. arXiv:1212.4389 [hep-ph] (2012)

    Google Scholar 

  34. Nielsen, N.: Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Nova Acta Leopoldina (Halle) 90, 123 (1909)

    Google Scholar 

  35. Remiddi, E.: Differential equations for Feynman graph amplitudes. Nuovo Cim. A110, 1435–1452 (1997)

    ADS  Google Scholar 

  36. Remiddi, E., Vermaseren, J.A.M.: Harmonic polylogarithms. Int. J. Mod. Phys. A15, 725 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  37. Reutenauer, C.: Free Lie Algebras. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  38. Stanley, R.P.: Spanning trees and a conjecture of Kontsevich. Ann. Comb. 2, 351–363 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sweedler, M.: Hopf Algebras. Benjamin, New York (1969)

    Google Scholar 

  40. Tarasov, O.V.: Connection between Feynman integrals having different values of the space-time dimension. Phys. Rev. D54, 6479–6490 (1996)

    MathSciNet  ADS  Google Scholar 

  41. Tarasov, O.V.: Generalized recurrence relations for two-loop propagator integrals with arbitrary masses. Nucl. Phys. B502, 455–482 (1997)

    Article  ADS  Google Scholar 

  42. Tutte, W.T.: Graph Theory. Encyclopedia of Mathematics and Its Applications, vol. 21. Addison-Wesley, Menlo Park (1984)

    Google Scholar 

  43. Vermaseren, J.A.M.: Harmonic sums, mellin transforms and integrals. Int. J. Mod. Phys. A14, 2037 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  44. Vollinga, J., Weinzierl, S.: Numerical evaluation of multiple polylogarithms. Comput. Phys. Commun. 167, 177 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Weinzierl, S.: Symbolic expansion of transcendental functions. Comput. Phys. Commun. 145, 357–370 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Weinzierl, S.: Expansion around half-integer values, binomial sums and inverse binomial sums. J. Math. Phys. 45, 2656–2673 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Zagier, D.: Values of zeta functions and their applications. In: Joseph A. et al. (eds.) First European Congress of Mathematics, Paris, 1992 vol. II, pp. 497–512. Birkhauser, Boston (1994)

    Chapter  Google Scholar 

  48. Zeilberger, D.: Dodgson’s determinant-evaluation rule proved by two-timing men and women. Electron. J. Comb. 4(R22), 2 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Weinzierl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Weinzierl, S. (2013). Feynman Graphs. In: Schneider, C., Blümlein, J. (eds) Computer Algebra in Quantum Field Theory. Texts & Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1616-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1616-6_16

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1615-9

  • Online ISBN: 978-3-7091-1616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics