Potential of FORM 4.0

  • Jos A. M. Vermaseren
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)


I describe the main new features of Form version 4.0. They include factorization, polynomial arithmetic, new special functions, systems independent. sav files, a complete ParForm, open source code and a forum for user communication. I also mention a completely new feature for code simplification.


  1. 1.
    Banerjee, N., Dutta, S., Lodato, I.: The fate of flat directions in higher derivative gravity. 36p (2013). e-Print: arXiv:1301.6773 [hep-th]Google Scholar
  2. 2.
    Vermaseren, J.A.M.: New features of FORM. arXiv math-ph/0010025Google Scholar
  3. 3.
    Tentyukov, M., Vermaseren, J.A.M.: The multithreaded version of FORM. Comput. Phys. Commun. 181, 1419 (2010). arXiv hep-ph/0702279Google Scholar
  4. 4.
    Kuipers, J., Vermaseren, J.A.M., Plaat, A., van den Herik, H.J.: Improving multi-variate Horner schemes with Monte Carlo tree search. arXiv 1207.7079Google Scholar
  5. 5.
    Kuipers, J., Vermaseren, J.A.M.: Code simplification in FORM (In preparation)Google Scholar
  6. 6.
    Lewis, R.H.: Fermat.
  7. 7.
    GNU Multiple Precision Arithmetic Library.
  8. 8.
    Mincer is a program for the evaluation of massless three loop propagator diagrams. The original paper is: Gorishnii, S.G., Larin, S.A., Surguladze, L.R., Tkachev, F.V.: Mincer: program for multiloop calculations in quantum field theory for the schoonschip system. Comput. Phys. Commun. 55, 381–408 (1989). A much improved Form version is included in the Form distributionGoogle Scholar
  9. 9.
    Blümlein, J., Broadhurst, D.J., Vermaseren, J.A.M.: The multiple zeta value datamine. Comput. Phys. Commun. 181, 582–625 (2010)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Kojima, M.: Efficient evaluation of polynomials and their partial derivatives in homotopy continuation methods. J. Oper. Res. Soc. Jpn. 51, 29–54 (2008)MathSciNetMATHGoogle Scholar
  11. 11.
    Leiserson, C.E., Li, L., Maza, M.M., Xie, Y.: Efficient evaluation of large polynomials. LNCS 6327, 342–353 (2010)Google Scholar
  12. 12.
    Reiter, T.: Optimising code generation with haggies. Comput. Phys. Commun. 181, 1301–1331 (2010). arXiv 0907.3714Google Scholar
  13. 13.
    Yuasa, F., et al.: Automatic computation of cross sections in HEP. Prog. Theor. Phys. Suppl. 138, 18 (2000). arXiv hep-ph/0007053Google Scholar
  14. 14.
    Fujimoto, J., et al.: GRACE with FORM. Nucl. Phys. Proc. Suppl. 160, 150–154 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.NikhefAmsterdamThe Netherlands

Personalised recommendations