Skip to main content

Generalization of Risch’s Algorithm to Special Functions

  • Chapter
  • First Online:

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

Symbolic integration deals with the evaluation of integrals in closed form. We present an overview of Risch’s algorithm including recent developments. The algorithms discussed are suited for both indefinite and definite integration. They can also be used to compute linear relations among integrals and to find identities for special functions given by parameter integrals. The aim of this presentation is twofold: to introduce the reader to some basic ideas of differential algebra in the context of integration and to raise awareness in the physics community of computer algebra algorithms for indefinite and definite integration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ablinger, J., Blümlein, J., Raab, C.G., Schneider, C., Wißbrock, F.: DESY 13-063 (preprint)

    Google Scholar 

  2. Ablinger, J., Blümlein, J., Raab, C.G., Schneider, C.: Iterated Binomial Sums (in preparation)

    Google Scholar 

  3. Abramov, S.A.: Rational solutions of linear differential and difference equations with polynomial coefficients. USSR Comput. Math. Math. Phys. 29(6), 7–12 (1989). (English translation of Zh. vychisl. Mat. mat. Fiz. 29, pp. 1611–1620, 1989)

    Google Scholar 

  4. Abramov, S.A.: On d’Alembert substitution. In: Proceedings of ISSAC’93, Kiev, pp. 20–26 (1993)

    Google Scholar 

  5. Abramov, S.A., Petkovšek, M.: D’Alembertian solutions of linear differential and difference equations. In: Proceedings of ISSAC’94, Oxford, pp. 169–174 (1994)

    Google Scholar 

  6. Almkvist, G., Zeilberger, D.: The method of differentiating under the integral sign. J. Symb. Comput. 10, 571–591 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baddoura, J.: Integration in finite terms with elementary functions and dilogarithms. J. Symb. Comput. 41, 909–942 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boettner, S.T.: Mixed transcendental and algebraic extensions for the Risch-Norman algorithm. PhD thesis, Tulane University, New Orleans (2010)

    Google Scholar 

  9. Bronstein, M.: A unification of Liouvillian extensions. Appl. Algebra Eng. Commun. Comput. 1, 5–24 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bronstein, M.: Integration of elementary functions. J. Symb. Comput. 9, 117–173 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bronstein, M.: On solutions of linear ordinary differential equations in their coefficient field. J. Symb. Comput. 13, 413–439 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bronstein, M.: Symbolic Integration Tutorial. Course Notes of an ISSAC’98 Tutorial, Rostock. Available at http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/issac98.pdf (1998)

  13. Bronstein, M.: Symbolic Integration I – Transcendental Functions, 2nd edn. Springer, Berlin/New York (2005)

    MATH  Google Scholar 

  14. Bronstein, M.: Structure theorems for parallel integration. J. Symb. Comput. 42, 757–769 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brown, F.C.S.: The massless higher-loop two-point function. Commun. Math. Phys. 287, 925–958 (2009). arXiv:0804.1660

    Google Scholar 

  16. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discret. Math. 217, 115–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chyzak, F., Kauers, M., Salvy, B.: A non-holonomic systems approach to special function identities. In: Proceedings of ISSAC’09, Seoul, pp. 111–118 (2009)

    Google Scholar 

  18. Czichowski, G.: A note on Gröbner bases and integration of rational functions. J. Symb. Comput. 20, 163–167 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gradshteyn, I.S., Ryzhik, I.M.: In: Jeffrey, A., Zwillinger, D. (eds.) Table of Integrals, Series, and Products, 7th edn. Academic, New York (2007)

    Google Scholar 

  20. Gröbner, W., Hofreiter, N.: Integraltafel – Zweiter Teil: Bestimmte Integrale, 4th edn. Springer, Wien (1966)

    Google Scholar 

  21. Hermite, C.: Sur l’intégration des fractions rationelles. Nouvelles annales de mathématiques (2e série) 11, 145–148 (1872)

    Google Scholar 

  22. Kaplansky, I.: An Introduction to Differential Algebra. Hermann, Paris (1957)

    MATH  Google Scholar 

  23. Kauers, M.: Integration of algebraic functions: a simple heuristic for finding the logarithmic part. In: Proceedings of ISSAC’08, Hagenberg, pp. 133–140 (2008)

    Google Scholar 

  24. Koutschan, C.: Advanced applications of the holonomic systems approach. PhD thesis, Johannes Kepler Universität Linz (2009)

    Google Scholar 

  25. Lazard, D., Rioboo, R.: Integration of rational functions: rational computation of the logarithmic part. J. Symb. Comput. 9, 113–115 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liouville, J.: Premier mémoire sur la detérmination des intégrales dont la valeur est algébrique. J. l’Ecole Polytechnique 14, 124–148 (1833)

    Google Scholar 

  27. Liouville, J.: Second mémoire sur la detérmination des intégrales dont la valeur est algébrique. J. l’Ecole Polytechnique 14, 149–193 (1833)

    Google Scholar 

  28. Liouville, J.: Mémoire sur l’intégration d’une classe de fonctions transcendantes. J. reine und angewandte Mathematik 13, 93–118 (1835)

    Article  MATH  Google Scholar 

  29. Mack, C.: Integration of affine forms over elementary functions. Computational Physics Group Report UCP-39, University of Utah (1976)

    Google Scholar 

  30. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966)

    MATH  Google Scholar 

  31. Mulders, T.: A note on subresultants and the Lazard/Rioboo/Trager formula in rational function integration. J. Symb. Comput. 24, 45–50 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Norman, A.C.: Integration in Finite Terms. In: Buchberger, B., Collins, G.E., Loos, R., Albrecht R. (eds.) Computer Algebra: Symbolic and Algebraic Computation, pp. 57–69. Springer, Wien (1983)

    Chapter  Google Scholar 

  33. Norman, A.C., Moore, P.M.A.: Implementing the new Risch Integration algorithm. In: Proceedings of the 4th International Colloquium on Advanced Computing Methods in Theoretical Physics, Saint-Maximin, pp. 99–110 (1977)

    Google Scholar 

  34. Piquette, J.C.: A method for symbolic evaluation of indefinite integrals containing special functions or their products. J. Symb. Comput. 11, 231–249 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Piquette, J.C., Van Buren, A.L.: Technique for evaluating indefinite integrals involving products of certain special functions. SIAM J. Math. Anal. 15, 845–855 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vols. 1–3. Gordon & Breach, New York (1986–1990)

    Google Scholar 

  37. Raab, C.G.: Definite integration in differential fields. PhD thesis, JKU Linz (2012)

    Google Scholar 

  38. Raab, C.G.: Using Gröbner bases for finding the logarithmic part of the integral of transcendental functions. J. Symb. Comput. 47, 1290–1296 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Remiddi, E., Vermaseren, J.A.M.: Harmonic polylogarithms. Int. J. Mod. Phys. A15, 725–754 (2000). arXiv:hep-ph/9905237

    Google Scholar 

  40. Rich, A.D., Jeffrey, D.J.: A knowledge repository for indefinite integration based on transformation rules. In: Proceedings of Calculemus/MKM 2009, Grand Bend, pp. 480–485 (2009)

    Google Scholar 

  41. Risch, R.H.: The problem of integration in finite terms. Trans. Am. Math. Soc. 139, 167–189 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ritt, J.F.: Integration in Finite Terms – Liouville’s Theory of Elementary Methods. Columbia University Press, New York (1948)

    MATH  Google Scholar 

  43. Rothstein, M.: Aspects of symbolic integration and simplification of exponential and primitive functions. PhD thesis, Univ. of Wisconsin-Madison (1976)

    Google Scholar 

  44. Singer, M.F.: Liouvillian solutions of linear differential equations with Liouvillian coefficients. J. Symb. Comput. 11, 251–273 (1991)

    Article  MATH  Google Scholar 

  45. Singer, M.F., Saunders, B.D., Caviness, B.F.: An extension of Liouville’s theorem on integration in finite terms. SIAM J. Comput. 14, 966–990 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Trager, B.M.: Algebraic factoring and rational function integration. In: Proceedings of SYMSAC’76, Yorktown Heights, pp. 219–226 (1976)

    Google Scholar 

  47. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comp. Appl. Math. 32, 321–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discret. Math. 80, 207–211 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author was supported by the Austrian Science Fund (FWF), grant no. W1214-N15 project DK6, by the strategic program “Innovatives OÖ 2010 plus” of the Upper Austrian Government, by DFG Sonderforschungsbereich Transregio 9 “Computergestützte Theoretische Teilchenphysik”, and by the Research Executive Agency (REA) of the European Union under the Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens G. Raab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Raab, C.G. (2013). Generalization of Risch’s Algorithm to Special Functions. In: Schneider, C., Blümlein, J. (eds) Computer Algebra in Quantum Field Theory. Texts & Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1616-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1616-6_12

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1615-9

  • Online ISBN: 978-3-7091-1616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics