Skip to main content

Harmonic Sums, Polylogarithms,Special Numbers, and Their Generalizations

  • Chapter
  • First Online:
Book cover Computer Algebra in Quantum Field Theory

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

In these introductory lectures we discuss classes of presently known nested sums, associated iterated integrals, and special constants which hierarchically appear in the evaluation of massless and massive Feynman diagrams at higher loops. These quantities are elements of stuffle and shuffle algebras implying algebraic relations being widely independent of the special quantities considered. They are supplemented by structural relations. The generalizations are given in terms of generalized harmonic sums, (generalized) cyclotomic sums, and sums containing in addition binomial and inverse-binomial weights. To all these quantities iterated integrals and special numbers are associated. We also discuss the analytic continuation of nested sums of different kind to complex values of the external summation bound N.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a detailed account on the literature on MZVs see [63, 64] and the surveys Ref. [65].

  2. 2.

    The numbers associated with this alphabet are sometimes also called Euler-Zagier values and those of the sub-alphabet \(\{\omega _{0},\omega _{1}\}\) multiple zeta values.

  3. 3.

    For some aspects of the earlier development including results by the Leuven-group, Zagier, Broadhurst, Vermaseren and the Lille-group, see [63].

  4. 4.

    Here the \(\zeta _{\mathbf{a}}\)-values are defined \(\zeta _{a_{1},\ldots,a_{m}} =\sum _{ n_{1}>n_{2}>\ldots>n_{m}}^{\infty }\prod _{k=1}^{m}n_{k}^{-a_{1}}\).

  5. 5.

    For a detailed proof also in case of generalized harmonic sums see [29].

References

  1. Lense, J.: Reihenentwicklungen in der Mathematischen Physik. Walter de Gryter, Berlin (1953)

    Book  MATH  Google Scholar 

  2. Sommerfeld, A.: Partielle Differentialgleichungen der Physik. In: Vorlesungen über Theoreti- sche Physik, vol. VI. Akademische Verlagsgesellschaft Geest and Prtig, Leipzig (1958)

    Google Scholar 

  3. Forsyth, A.R.: Theory of Differential Equations, pp. 2–4. Cambridge University Press, Cambridge (1900–1902);Kamke, E.: Differentialgleichungen, Lösungsmethoden und Lösungen. Akademische Verlagsgesellschaft Geest and Portig, Leipzig (1967)

    Google Scholar 

  4. Kratzer, A., Franz, W.: Transzendente Funktionen. Akademische Verlagsgesellschaft Geest and Portig, Leipzig (1963)

    Google Scholar 

  5. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  6. Nakanishi, N.: Parametric integral formulas and analytic properties in perturbation theory. Suppl. Progr. Theor. Phys. 18, 1–125 (1961); Graph Theory and Feynman Integrals. Gordon and Breach, New York (1970);Bogner, C., Weinzierl, S.: Feynman graph polynomials. Int. J. Mod. Phys. A 25, 2585–2618 (2010). [arXiv:1002.3458 [hep-ph]];Weinzierl, S.: (this volume)

    Google Scholar 

  7. Vermaseren, J.A.M., Vogt, A., Moch, S.: The third-order QCD corrections to deep-inelastic scattering by photon exchange. Nucl. Phys. B 724, 3–182 (2005). [arXiv:hep-ph/0504242] and refences therein

    Google Scholar 

  8. Bierenbaum, I., Blümlein, J., Klein, S.: Mellin moments of the O(α s 3) heavy flavor contributions to unpolarized deep-inelastic scattering at \({Q}^{2} \gg {m}^{2}\) and anomalous dimensions. Nucl. Phys. B 820, 417–482 (2009). [arXiv: 0904.3563 [hep-ph]]

    Google Scholar 

  9. Kontsevich, M., Zagier, D.: Periods. IMHS/M/01/22. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited – 2001 and Beyond, pp. 771–808. Springer, Berlin (2011)

    Google Scholar 

  10. Bogner, C., Weinzierl, S.: Periods and Feynman integrals. J. Math. Phys. 50, 042302 (2009). [arXiv:0711.4863 [hep-th]]

    Google Scholar 

  11. Poincaré, H.: Sur les groupes des équations linéaires. Acta Math. 4, 201–312 (1884);Lappo-Danilevsky, J.A.: Mémoirs sur la Théorie des Systèmes Différentielles Linéaires. Chelsea Publishing Company, New York (1953);Chen, K.T.: Algebras of iterated path integrals and fundamental groups. Trans. A.M.S. 156(3), 359–379 (1971)

    Google Scholar 

  12. Jonquière, A.: Über einige Transcendente, welche bei der wiederholten Integration rationaler Funktionen auftreten. Bihang till Kongl. Svenska Vetenskaps-Akademiens Handlingar 15, 1–50 (1889)

    Google Scholar 

  13. Mellin, H.: Über die fundamentale Wichtigkeit des Satzes von Cauchy für die Theorien der Gamma- und hypergeometrischen Funktionen. Acta Soc. Fennicae 21, 1–115 (1886); Über den Zusammenhang zwischen den linearen Differential- und Differenzengleichungen. Acta Math. 25, 139–164 (1902)

    Google Scholar 

  14. Blümlein, J.: Structural relations of harmonic sums and Mellin transforms up to weight w = 5. Comput. Phys. Commun. 180, 2218–2249 (2009). [arXiv:0901.3106 [hep-ph]]

    Google Scholar 

  15. Blümlein, J., Klein, S., Schneider, C., Stan, F.: A symbolic summation approach to Feynman integral calculus. J. Symb. Comput. 47, 1267–1289 (2012). [arXiv:1011.2656 [cs.SC]]

    Google Scholar 

  16. Barnes, E.W.: A new development of the theory of the hypergeometric functions. Proc. Lond. Math. Soc. 6(2), 141 (1908); A transformation of generalized hypergeometric series. Quart. Journ. Math. 41, 136–140 (1910);Mellin, H.: Abriß einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen. Math. Ann. 68, 305–337 (1910)

    Google Scholar 

  17. Gluza, J., Kajda, K., Riemann, T.: AMBRE: a mathematica package for the construction of Mellin-Barnes representations for Feynman integrals. Comput. Phys. Commun. 177, 879–893 (2007). [arXiv:0704.2423 [hep-ph]]

    Google Scholar 

  18. ’t Hooft, G., Veltman, M.J.G.: Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972);Bollini, C.G., Giambiagi, J.J.: Dimensional renormalization: the number of dimensions as a regularizing parameter. Nuovo Cim. B 12, 20–26 (1972);Ashmore, J.F.: A method of gauge invariant regularization. Lett. Nuovo Cim. 4, 289–290 (1972);Cicuta, G.M., Montaldi, E.: Analytic renormalization via continuous space dimension. Lett. Nuovo Cim. 4, 329–332 (1972)

    Google Scholar 

  19. Berends, F.A., van Neerven, W.L., Burgers, G.J.H.: Higher order radiative corrections at LEP energies. Nucl. Phys. B 297, 429–478 (1988). [Erratum-ibid. B 304, 921 (1988)];Blümlein, J., De Freitas, A., van Neerven, W.: Two-loop QED operator matrix elements with massive external fermion lines. Nucl. Phys. B 855, 508–569 (2012). [arXiv:1107.4638 [hep-ph]];Hamberg, R., van Neerven, W.L., Matsuura, T.: A complete calculation of the order α s 2 correction to the Drell-Yan K-factor. Nucl. Phys. B 359, 343–405 (1991). [Erratum-ibid. B 644, 403–404 (2002)];Zijlstra, E.B., van Neerven, W.L.: Contribution of the second order gluonic Wilson coefficient to the deep inelastic structure function. Phys. Lett. B 273, 476–482 (1991); O(α s 2) contributions to the deep inelastic Wilson coefficient. Phys. Lett. B 272, 127–133 (1991); O(α s 2) QCD corrections to the deep inelastic proton structure functions F 2 and F L . Nucl. Phys. B 383, 525–574 (1992); O(α s 2) corrections to the polarized structure function g 1(x,Q 2). Nucl. Phys. B 417, 61–100 (1994). [Erratum-ibid. B 426, 245 (1994)], [Erratum-ibid. B 773, 105–106 (2007)];Kazakov, D.I., Kotikov, A.V.: Totalas correction to deep-inelastic scattering cross section ratio R = σ L ∕σ T in QCD. Calculation of the longitudinal structure function. Nucl. Phys. B 307, 721–762 (1988). [Erratum-ibid. B 345, 299 (1990)];Kazakov, D.I., Kotikov, A.V., Parente, G., Sampayo, O.A., Sanchez Guillen, J.: Complete quartic (α s 2) correction to the deep inelastic longitudinal structure function F L in QCD. Phys. Rev. Lett. 65, 1535–1538 (1990). [Erratum-ibid. 65, 2921 (1990)];Sanchez Guillen, J., Miramontes, J., Miramontes, M., Parente, G., Sampayo, O.A.: Next-toleading order analysis of the deep inelastic R = σ L ∕σ total . Nucl. Phys. B 353, 337–345 (1991)

    Google Scholar 

  20. Leibniz, G.W.: Mathematische Schriften. In: Gerhardt C.J. (ed.) vol. III, p. 351. Verlag H.W.Schmidt, Halle (1858);Euler, L.: Institutiones calculi integralis, vol. I, pp. 110–113. Impensis Academiae Imperialis Scientiarum, Petropoli (1768); Mémoires de l’Académie de Sint-P’etersbourg (1809–1810), vol. 3, pp. 26–42 (1811);Landen, J.: A new method of computing sums of certain series. Phil. Trans. R. Soc. Lond. 51, 553–565 (1760); Mathematical Memoirs, p. 112 (Printed for the Author, Nourse, J., London, 1780);Lewin, L.: Dilogarithms and Associated Functions. Macdonald, London (1958);Kirillov, A.N.: Dilogarithm identities. Prog. Theor. Phys. Suppl. 118, 61–142 (1995). [hep-th/9408113];Maximon, L.C.: The dilogarithm function for complex argument. Proc. R. Soc. A 459, 2807–2819 (2003);Zagier, D.: The remarkable dilogarithm. J. Math. Phys. Sci. 22, 131–145 (1988); In: Cartier, P., Julia, B., Moussa et al., P. (eds.) Frontiers in Number Theory, Physics, and Geometry II – On Conformal Field Theories, Discrete Groups and Renormalization, pp. 3–65. Springer, Berlin (2007)

    Google Scholar 

  21. Spence, W.: An Essay of the Theory of the Various Orders of Logarithmic Transcendents. John Murray, London (1809)

    Google Scholar 

  22. Kummer, E.E.: Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen. J. für Math. (Crelle) 21, 74–90 (1840)

    Article  MATH  Google Scholar 

  23. Lewin, L.: Polylogarithms and Associated Functions. North Holland, New York (1981);Devoto, A., Duke, D.W.: Table of integrals and formulae for Feynman diagram calculations. Riv. Nuovo Cim. 7(6), 1–39 (1984)

    Google Scholar 

  24. Nielsen, N.: Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Nova Acta Leopold. XC Nr. 3, 125–211 (1909);Kölbig, K.S., Mignoco, J.A., Remiddi, E.: On Nielsen’s generalized polylogarithms and their numerical calculation. BIT 10, 38–74 (1970);Kölbig, K.S.: Nielsen’s generalized polylogarithms. SIAM J. Math. Anal. 17, 1232–1258 (1986)

    Google Scholar 

  25. Vermaseren, J.A.M.: Harmonic sums, Mellin transforms and integrals. Int. J. Mod. Phys. A 14, 2037–2076 (1999). [hep-ph/9806280]

    Google Scholar 

  26. Blümlein, J., Kurth, S.: Harmonic sums and Mellin transforms up to two loop order. Phys. Rev. D 60, 014018 (1999). [hep-ph/9810241]

    Google Scholar 

  27. Remiddi, E., Vermaseren, J.A.M.: Harmonic polylogarithms. Int. J. Mod. Phys. A 15, 725–754 (2000). [hep-ph/9905237]

    Google Scholar 

  28. Moch, S.-O., Uwer, P., Weinzierl, S.: Nested sums, expansion of transcendental functions and multiscale multiloop integrals. J. Math. Phys. 43, 3363–3386 (2002). [hep-ph/0110083]

    Google Scholar 

  29. Ablinger, J., Blümlein, J., Schneider, C.: Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms. [arXiv:1302.0378 [math-ph]]

    Google Scholar 

  30. Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by cyclotomic polynomials. J. Math. Phys. 52, 102301 (2011). [arXiv:1105.6063 [math-ph]]

    Google Scholar 

  31. Laporta, S.: High precision \(\varepsilon\)-expansions of massive four loop vacuum bubbles Phys. Lett. B 549, 115–122 (2002). [hep-ph/0210336]; Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals. Int. J. Mod. Phys. A 23, 5007–5020 (2008). [arXiv:0803.1007 [hep-ph]];Bailey, D.H., Borwein, J.M., Broadhurst, D., Glasser, M.L.: Elliptic integral evaluations of Bessel moments. [arXiv:0801.0891 [hep-th]];Müller-Stach, S., Weinzierl, S., Zayadeh, R.: Picard-Fuchs equations for Feynman integrals. [arXiv:1212.4389 [hep-ph]];Adams, L., Bogner, C., Weinzierl, S.: The two-loop sunrise graph with arbitrary masses. [arXiv:1302.7004 [hep-ph]]

    Google Scholar 

  32. Schneider, C.: The summation package sigma: underlying principles and a rhombus tiling application. Discret. Math. Theor. Comput. Sci. 6, 365–386 (2004); Solving parameterized linear difference equations in terms of indefinite nested sums and products. Differ, J.: Equ. Appl. 11(9), 799–821 (2005); A new sigma approach to multi-summation. Adv. Appl. Math. 34(4), 740–767 (2005); Product representations in ΠΣ-fields. Ann. Comb. 9(1), 75–99 (2005); Symbolic summation assists combinatorics. Sem. Lothar. Combin. 56, 1–36 (2007); A refined difference field theory for symbolic summation. J. Symb. Comp. 43(9), 611–644 (2008). arXiv:0808.2543 [cs.SC]; Parameterized telescoping proves algebraic independence of sums. Ann. Comb. 14(4), 533–552 (2010). [arXiv:0808.2596 [cs.SC]]; Structural theorems for symbolic summation. Appl. Algebra Eng. Comm. Comput. 21(1), 1–32 (2010); A symbolic summation approach to find optimal nested sum representations. In: Carey, A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, Quantum Field Theory, and Pseudodifferential Operators, vol. 12, pp. 285–308. Clay Mathematics Proceedings. American Mathematical Society (2010). [arXiv:0904.2323 [cs.SC]]; and this volume

    Google Scholar 

  33. Bronstein, M.: Symbolic Integration I: Transcendental Functions. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  34. Raab, C.: Definite integration in differential fields. PhD thesis, Johannes Kepler University Linz (2012); and this volume

    Google Scholar 

  35. Ablinger, J.: A computer algebra toolbox for harmonic sums related to particle physics. Master’s thesis, Johannes Kepler University (2009). [arXiv:1011.1176 [math-ph]]; Computer algebra algorithms for special functions in particle physics. PhD thesis, Johannes Kepler University Linz (2012)

    Google Scholar 

  36. Feynman, R.P.: Space - time approach to quantum electrodynamics. Phys. Rev. 76, 769–789 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Napier, J.: Mirifici logarithmorum canonis descriptio, ejusque usus, in utraque trigonometria; ut etiam in omni logistica mathematica, amplissimi, facillimi, & expeditissimi explacatio. Andrew Hart, Edinburgh (1614)

    Google Scholar 

  38. Racah, G.: Sopra l’rradiazione nell’urto di particelle veloci. Nuovo Com. 11, 461–476 (1934)

    Article  Google Scholar 

  39. Fleischer, J., Kotikov, A.V., Veretin, O.L.: Analytic two loop results for selfenergy type and vertex type diagrams with one nonzero mass. Nucl. Phys. B 547, 343–374 (1999). [hep-ph/9808242]

    Google Scholar 

  40. Blümlein, J., Ravindran, V.: Mellin moments of the next-to-next-to leading order coefficient functions for the Drell-Yan process and hadronic Higgs-boson production. Nucl. Phys. B 716, 128–172 (2005). [hep-ph/0501178]; O(α s 2) timelike Wilson coefficients for parton-fragmentation functions in Mellin space. Nucl. Phys. B 749, 1–24 (2006). [hep-ph/0604019];Blümlein, J., Klein, S.: Structural relations between harmonic sums up to w=6. PoS ACAT 084 (2007). [arXiv:0706.2426 [hep-ph]];Bierenbaum, I., Blümlein, J., Klein, S., Schneider, C.: Two-loop massive operator matrix elements for unpolarized heavy flavor production to O(\(\varepsilon\)). Nucl. Phys. B 803, 1–41 (2008). [arXiv:0803.0273 [hep-ph]];Czakon, M., Gluza, J., Riemann, T.: Master integrals for massive two-loop Bhabha scattering in QED. Phys. Rev. D 71, 073009 (2005). [hep-ph/0412164]

    Google Scholar 

  41. Moch, S., Vermaseren, J.A.M., Vogt, A.: The three loop splitting functions in QCD: the non-singlet case. Nucl. Phys. B 688, 101–134 (2004). [hep-ph/0403192]; The three-loop splitting functions in QCD: the Singlet case. Nucl. Phys. B 691, 129–181 (2004). [hep-ph/0404111]

    Google Scholar 

  42. Gehrmann, T., Remiddi, E.: Numerical evaluation of harmonic polylogarithms. Comput. Phys. Commun. 141, 296–312 (2001). [arXiv:hep-ph/0107173]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Vollinga, J., Weinzierl, S.: Numerical evaluation of multiple polylogarithms. Comput. Phys. Commun. 167, 177–194 (2005). [arXiv:hep-ph/0410259]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Gonzalez-Arroyo, A., Lopez, C., Yndurain, F.J.: Second order contributions to the structure functions in deep inelastic scattering. 1. Theoretical calculations. Nucl. Phys. B 153, 161–186 (1979);Floratos, E.G., Kounnas, C., Lacaze, R.: Higher order QCD effects in inclusive annihilation and deep inelastic scattering. Nucl. Phys. B 192, 417–462 (1981)

    Google Scholar 

  45. Mertig, R., van Neerven, W.L.: The calculation of the two loop spin splitting functions P ij (1)(x). Z. Phys. C 70, 637–654 (1996). [hep-ph/9506451]

    Google Scholar 

  46. Wilson, K.G.: Non-lagrangian models of current algebra. Phys. Rev. 179, 1499–1512 (1969); Zimmermann, W.: Lecture on Elementary Particle Physics and Quantum Field Theory, Brandeis Summer Institute, vol. 1, p. 395. MIT Press, Cambridge (1970); Brandt, R.A., Preparata, G.: The light cone and photon-hadron interactions. Fortsch. Phys. 20, 571–594 (1972); Frishman, Y.: Operator products at almost light like distances. Ann. Phys. 66, 373–389 (1971); Blümlein, J., Kochelev, N.: On the twist-2 and twist-three contributions to the spin dependent electroweak structure functions. Nucl. Phys. B 498, 285–309 (1997). [hep-ph/9612318]

    Google Scholar 

  47. Hoffman, M.E.: Quasi-shuffle products. J. Algebraic Combin. 11, 49–68 (2000). [arXiv:math/9907173 [math.QA]]; The Hopf algebra structure of multiple harmonic sums. Nucl. Phys. (Proc. Suppl.) 135, 215 (2004). [arXiv:math/0406589]

    Google Scholar 

  48. Berndt, B.C.: Ramanujan’s Notebooks, Part I. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  49. Faà di Bruno, F.: Einleitung in die Theorie dier Binären Formen, deutsche Bearbeitung von Th. Walter. Teubner, Leipzig (1881)

    Google Scholar 

  50. Blümlein, J.: Algebraic relations between harmonic sums and associated quantities. Comput. Phys. Commun. 159, 19–54 (2004). [hep-ph/0311046]

    Google Scholar 

  51. Borwein, J.M., Bradley, D.M., Broadhurst, D.J., Lisonek, P.: Special values of multiple polylogarithms. Trans. Am. Math. Soc. 353, 907–941 (2001). [math/9910045 [math-ca]]

    Google Scholar 

  52. Lyndon, R.C.: On Burnsides problem. Trans. Am. Math. Soc. 77, 202–215 (1954); On Burnsides problem II. Trans. Amer. Math. Soc. 78, 329–332 (1955)

    Google Scholar 

  53. Reutenauer, C.: Free Lie algebras. University Press, Oxford (1993)

    MATH  Google Scholar 

  54. Radford, D.E.: J. Algebra 58, 432–454 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  55. Witt, E.: Treue Darstellung Liescher Ringe. J. Reine und Angew. Math. 177, 152–160 (1937); Die Unterringe der freien Lieschen Ringe. Math. Zeitschr. 64, 195–216 (1956)

    Google Scholar 

  56. Möbius, A.F.: Über eine besondere Art von Umkehrung der Reihen. J. Reine Angew. Math. 9, 105–123 (1832);Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Calendron Press, Oxford (1978)

    Google Scholar 

  57. Maitre, D.: HPL, a mathematica implementation of the harmonic polylogarithms. Comput. Phys. Commun. 174, 222–240 (2006). [hep-ph/0507152]

    Google Scholar 

  58. Ablinger, J., Blümlein, J., Schneider, C.: DESY 13-064

    Google Scholar 

  59. Blümlein, J.: The theory of deeply inelastic scattering. Prog. Part. Nucl. Phys. 69, 28 (2013). [arXiv:1208.6087 [hep-ph]]

    Google Scholar 

  60. Blümlein, J.: Structural relations of harmonic sums and Mellin transforms at weight w = 6. In: Carey, A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, Quantum Field Theory, and Pseudodifferential Operators, vol. 12, pp. 167–186. Clay Mathematics Proceedings, American Mathematical Society (2010). [arXiv:0901.0837 [math-ph]].

    Google Scholar 

  61. Euler, L.: Meditationes circa singulare serium genus. Novi Commentarii academiae scientiarum Petropolitanae 20, 140–186 (1776)

    Google Scholar 

  62. Zagier, D.: Values of zeta functions and their applications. In: First European Congress of Mathematics (Paris, 1992), vol. II. Prog. Math. 120, 497–512 (Birkhäuser, Basel–Boston) (1994)

    Google Scholar 

  63. Blümlein, J., Broadhurst, D.J., Vermaseren, J.A.M.: The multiple zeta value data mine. Comput. Phys. Commun. 181, 582–625 (2010). [arXiv:0907.2557 [math-ph]] and references therein

    Google Scholar 

  64. Hoffman, M.E.: Hoffman’s page. http://www.usna.edu/Users/math/~meh/biblio.html

  65. Fischler, S.: Irrationalité de valeurs de zéta. Sém. Bourbaki, Novembre 2002, exp. no. 910. Asterisque 294, 27–62 (2004) http://www.math.u-psud.fr/~fischler/publi.html; Colmez, P.: Arithmetique de la fonction zêta. In: Journées X-UPS 2002. La fontion zêta. Editions de l’Ecole polytechnique, pp. 37–164. Paris (2002). http://www.math.polytechnique.fr/xups/vol02.html;Waldschmidt, M.: Multiple polylogarithms: an introduction. In: Agarwal, A.K., Berndt, B.C., Krattenthaler, C.F., Mullen, G.L., Ramachandra, K., Waldschmidt, M. (eds.) Number Theory and Discrete Mathematics, pp. 1–12. Hindustan Book Agency, New Delhi (2002);Waldschmidt, M.: Valeurs zêta multiples. Une introduction. Journal de théorie des nombres de Bordeaux 12(2), 581–595 (2000);Huttner, M., Petitot, M.: Arithmeétique des fonctions d’zetas et Associateur de Drinfel’d. UFR de Mathématiques, Lille (2005)Hertling, C.: AG Mannheim-Heidelberg, SS2007;Cartier, P.: Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents. Sém. Bourbaki, Mars 2001, 53e année, exp. no. 885. Asterisque 282, 137–173 (2002)

    Google Scholar 

  66. Barbieri, R., Mignaco, J.A., Remiddi, E.: Electron form-factors up to fourth order. 1. Nuovo Cim. A 11, 824–864 (1972);Levine, M.J., Remiddi, E., Roskies, R.: Analytic contributions to the G factor of the electron in sixth order. Phys. Rev. D 20, 2068–2076 (1979)

    Google Scholar 

  67. Kuipers, J., Vermaseren, J.A.M.: About a conjectured basis for multiple zeta values. [arXiv:1105.1884 [math-ph]]

    Google Scholar 

  68. Goncharov, A.B.: Multiple polylogarithms and mixed Tate motives. [arxiv:math.AG/0103059];Terasoma, T.: Mixed Tate motives and multiple zeta values. Invent. Math. 149(2), 339–369 (2002). arxiv:math.AG/010423;Deligne, P., Goncharov, A.B.: Groupes fondamentaux motiviques de Tate mixtes. Ann. Sci. Ecole Norm. Sup. Série IV 38(1), 1–56 (2005)

    Google Scholar 

  69. Broadhurst, D.J.: On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory. [arXiv:hep-th/9604128]

    Google Scholar 

  70. Broadhurst, D.J., Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B 393, 403–412 (1997). [arXiv:hep-th/9609128]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. http://en.wikipedia.org/wiki/Padovan_sequence;http://www.emis.de/journals/NNJ/conferences/N2002-Padovan.html

  72. Perrin, R.: Item 1484, L’Intermédiare des Math. 6, 76–77 (1899);Williams, A., Shanks, D.: Strong primality tests that are not sufficient. Math. Comput. 39(159), 255–300 (1982)

    Google Scholar 

  73. de filiis Bonaccij, L.P.: Liber abaci, Cap. 12.7. Pisa (1202);Sigler, L.E.: Fibonacci’s Liber Abaci. Springer, Berlin (2002)

    Google Scholar 

  74. Hoffman, M.E.: The algebra of multiple harmonic series. J. Algebra 194, 477–495 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  75. Brown, F.: Mixed tate motives over Z. Ann. Math. 175(1), 949–976 (2012)

    Article  MATH  Google Scholar 

  76. The formula goes back to de Moivre, Bernoulli, Euler, and later Binet, see: Beutelspacher, A., Petri, B.: Der Goldene Schnitt. Spektrum, Heidelberg (1988)

    Google Scholar 

  77. Lucas, E.: Théorie des fonctions numériques simplement périodiques. Am. J. Math. 1, 197–240 (1878)

    Article  Google Scholar 

  78. Euler, L.: Meditationes circa singulare serium genus. Novi Comm. Acad. Sci. Petropol. 20, 140–186 (1775). (reprinted in Opera Omnia Ser I, vol. 15, pp. 217–267. B.G. Teubner, Berlin (1927))

    Google Scholar 

  79. Hoffman, M. E., Moen, C.: Sums of triple harmonic series. J. Number Theory 60, 329–331 (1996);Granville, A.: A decomposition of Riemann’s zeta-function. In: Motohashi, Y. (ed.) Analytic Number Theory, London Mathematical Society. Lecture Note Series, vol. 247, pp. 95–101. Cambridge University Press, Cambridge (1997); Zagier, D.: Multiple Zeta Values. (preprint)

    Google Scholar 

  80. Hoffman, M.E.: Multiple harmonic series. Pac. J. Math. 152, 275–290 (1992)

    Article  MATH  Google Scholar 

  81. Hoffman, M.E.: Algebraic aspects of multiple zeta values. In: Aoki et al., T. (eds.) Zeta Functions, Topology and Quantum Physics. Developments in Mathematics, vol. 14, pp. 51–74. Springer, New York (2005). [arXiv:math/0309452 [math.QA]]

    Google Scholar 

  82. Okuda, J., Ueno, K.: The sum formula of multiple zeta values and connection problem of the formal Knizhnik–Zamolodchikov equation. In: Aoki et al., T. (eds.) Zeta Functions, Topology and Quantum Physics. Developments in Mathematics, vol. 14, pp. 145–170. Springer, New York (2005). [arXiv:math/0310259 [math.NT]]

    Google Scholar 

  83. Hoffmann, M.E., Ohno, Y.: Relations of multiple zeta values and their algebraic expressions. J. Algebra 262, 332–347 (2003)

    Article  MathSciNet  Google Scholar 

  84. Zudilin, V.V.: Algebraic relations for multiple zeta values. Uspekhi Mat. Nauk 58(1), 3–22

    Google Scholar 

  85. Ihara, K., Kaneko, M.: A note on relations of multiple zeta values (preprint)

    Google Scholar 

  86. Le, T.Q.T., Murakami, J.: Kontsevich’s integral for the Homfly polynomial and relations between values of multiple zeta functions. Topol. Appl. 62, 193–206 (1995)

    Article  MathSciNet  Google Scholar 

  87. Ohno, Y.: A generalization of the duality and sum formulas on the multiple zeta values. J. Number Theory 74, 189–209 (1999)

    Article  MathSciNet  Google Scholar 

  88. Ohno, Y., Zagier, D.: Indag. Math. (N.S.) 12, 483–487 (2001)

    Google Scholar 

  89. Ohno, Y., Wakabayashi, N.: Cyclic sum of multiple zeta values. Acta Arithmetica 123, 289–295 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  90. Borwein, J.M., Bradley, D.M., Broadhurst, D.J.: Evaluations of K fold Euler/Zagier sums: a compendium of results for arbitrary k. [hep-th/9611004]

    Google Scholar 

  91. Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Compositio Math. 142, 307–338 (2006); Preprint MPIM2004-100

    Google Scholar 

  92. Écalle, J.: Théorie des moules, vol. 3, prépublications mathématiques d‘Orsay (1981, 1982, 1985); La libre génération des multicêtas et leur d’ecomposition canonico-explicite en irréductibles, automne (1999); Ari/gari et la décomposition des multizêtas en irréductibles. Prépublication, avril (2000)

    Google Scholar 

  93. Berndt, B.C.: Ramanujan’s Notebooks, Part IV, pp. 323–326. Springer, New York (1994)

    Google Scholar 

  94. Ablinger, J., Blümlein, J., Raab, C., Schneider, C., Wißbrock, F.: DESY 13–063

    Google Scholar 

  95. Weinzierl, S.: Feynman Graphs. [arXiv:1301.6918 [hep-ph]]

    Google Scholar 

  96. Hopf, H.: Über die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallgemeinerungen. Ann. Math. 42, 22–52 (1941);Milner, J., Moore, J.: On the structure of Hopf algebras. Ann. Math. 81, 211–264 (1965);Sweedler, M.E.: Hopf Algebras. Benjamin, New York (1969)

    Google Scholar 

  97. Goncharov, A.B.: Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett. 5, 497–516 (1998). [arXiv:1105.2076 [math.AG]]

    Google Scholar 

  98. Gehrmann, T., Remiddi, E.: Two loop master integrals for γ → 3 jets: the planar topologies. Nucl. Phys. B 601, 248–286 (2001). [hep-ph/0008287]; Numerical evaluation of twodimensional harmonic polylogarithms. Comput. Phys. Commun. 144, 200–223 (2002). [hep-ph/0111255]

    Google Scholar 

  99. Weinzierl, S.: Symbolic expansion of transcendental functions. Comput. Phys. Commun. 145, 357–370 (2002). [math-ph/0201011]

    Google Scholar 

  100. Moch, S.-O., Uwer, P.: XSummer: transcendental functions and symbolic summation in FORM. Comput. Phys. Commun. 174, 759–770 (2006). [math-ph/0508008]

    Google Scholar 

  101. Appell, P.: Sur Les Fonctions Hypérgéometriques de Plusieurs Variables. Gauthier-Villars, Paris (1925);Appell, P., Kampé de Fériet, J.: Fonctions Hypérgéometriques; Polynômes d’Hermite. Gauthier-Villars, Paris (1926);Bailey, W.N.: Generalized Hypergeometric Series. Cambridge University Press, Cambridge (1935);Erdélyi, A. (ed.): Higher Transcendental Functions, Bateman Manuscript Project, vol. I. McGraw-Hill, New York (1953);Exton, H.: Multiple Hypergeometric Functions and Applications. Ellis Horwood Limited, Chichester (1976); Handbook of Hypergeometric Integrals. Ellis Horwood Limited, Chichester (1978);Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966);Schlosser, H.: (this volume);Anastasiou, C., Glover, E.W.N., Oleari, C.: Application of the negative dimension approach to massless scalar box integrals. Nucl. Phys. B 565, 445–467 (2000). [hep-ph/9907523]; Scalar one loop integrals using the negative dimension approach. Nucl. Phys. B 572, 307–360 (2000). [hep-ph/9907494];Glover, E.W.N.: (this volume)

    Google Scholar 

  102. Ablinger, J., Blümlein, J., Hasselhuhn, A., Klein, S., Schneider, C., Wißbrock, F.: Massive 3-loop ladder diagrams for quarkonic local operator matrix elements. Nucl. Phys. B 864, 52–84 (2012). [arXiv:1206.2252 [hep-ph]]

    Google Scholar 

  103. Ablinger, J., et al.: New results on the 3-loop heavy Flavor Wilson coefficients in deep-inelastic scattering. [arXiv:1212.5950 [hep-ph]]; Three-loop contributions to the gluonic massive operator matrix elements at general values of N. PoS LL 2012, 033 (2012). [arXiv:1212.6823 [hep-ph]]

    Google Scholar 

  104. Lang, S.: Algebra, 3rd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  105. Euler, L.: Theoremata arithmetica nova methodo demonstrata. Novi Commentarii academiae scientiarum imperialis Petropolitanae, vol. 8, pp. 74–104 (1760/1, 1763); Opera Omnia, Ser. I, vol. 2, pp. 531–555. Takase, M.: Euler’s Theory of Numbers In: Baker, R. (ed.) Euler Reconsidered, pp. 377–421. Kedrick Press, Heber City (2007). leonhardeuler.web.fc2.com/eulernumber_en.pdf

  106. Catalan, E.: Recherches sur la constant G, et sur les integrales euleriennes. Mémoires de l’Academie imperiale des sciences de Saint-Pétersbourg, Ser. 7(31), 1–51 (1883);Adamchik, V. http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm

  107. Broadhurst, D.J.: Massive three - loop Feynman diagrams reducible to SC primitives of algebras of the sixth root of unity. Eur. Phys. J. C 8 311–333 (1999). [hep-th/9803091]

    ADS  Google Scholar 

  108. Racinet, G.: Torseurs associes a certaines relations algebriques entre polyzetas aux racines de l’unite. Comptes rendus de l’Académie des sciences. Série 1, Mathématique 333(1), 5–10 (2001). [arXiv:math.QA/0012024]

    Google Scholar 

  109. Davydychev, A.I., Kalmykov, M.Y.: Massive Feynman diagrams and inverse binomial sums. Nucl. Phys. B 699, 3–64 (2004). [hep-th/0303162];Weinzierl, S.: Expansion around half integer values, binomial sums and inverse binomial sums. J. Math. Phys. 45, 2656–2673 (2004). [hep-ph/0402131];Kalmykov, M.Y.: Gauss’ hypergeometric function: Reduction, \(\varepsilon\)-expansion for integer/halfinteger parameters and Feynman diagrams. JHEP 0604, 056 (2006). [hep-th/0602028];Huber, T., Maitre, D.: Expanding hypergeometric functions about half-integer parameters. Comput. Phys. Commun. 178, 755–776 (2008). [arXiv:0708.2443 [hep-ph]]

    Google Scholar 

  110. Ablinger, J., Blümlein, J., Raab, C., Schneider, C.: (in preparation)

    Google Scholar 

  111. Aglietti, U., Bonciani, R.: Master integrals with 2 and 3 massive propagators for the 2 loop electroweak form-factor - planar case. Nucl. Phys. B 698, 277–318 (2004). [hep-ph/0401193];Bonciani, R., Degrassi, G., Vicini, A.: On the generalized harmonic polylogarithms of one complex variable. Comput. Phys. Commun. 182, 1253–1264 (2011). [arXiv:1007.1891 [hep-ph]]

    Google Scholar 

  112. Symanzik, K.: Small distance behavior in field theory and power counting. Commun. Math. Phys. 18, 227–246 (1970);Callan, C.G., Jr.: Broken scale invariance in scalar field theory. Phys. Rev. D 2, 1541–1547 (1970)

    Google Scholar 

  113. Blümlein, J., Hasselhuhn, A., Kovacikova, P., Moch, S.: O s ) heavy flavor corrections to charged current deep-inelastic scattering in Mellin space. Phys. Lett. B 700, 294–304 (2011). [arXiv:1104.3449 [hep-ph]]

    Google Scholar 

  114. Blümlein, J., Vogt, A.: The evolution of unpolarized singlet structure functions at small x. Phys. Rev. D 58, 014020 (1998). [hep-ph/9712546]

    Google Scholar 

  115. Nielsen, N.: Handbuch der Theorie der Gammafunktion. Teubner, Leipzig (1906); Reprinted by Chelsea Publishing Company, Bronx, New York (1965)

    Google Scholar 

  116. Landau, E.: Über die Grundlagen der Theorie der Fakultätenreihen, S.-Ber. math.-naturw. Kl. Bayerische Akad. Wiss. München, 36, 151–218 (1906)

    Google Scholar 

  117. Carlson, F.D.: Sur une classe de séries de Taylor. PhD thesis, Uppsala University (1914);see also http://en.wikipedia.org/wiki/Carlson/%27s_theorem

  118. Blümlein, J.: Analytic continuation of Mellin transforms up to two loop order. Comput. Phys. Commun. 133, 76–104 (2000). [hep-ph/0003100];Blümlein, J., Moch, S.-O.: Analytic continuation of the harmonic sums for the 3-loop anomalous dimensions. Phys. Lett. B 614, 53–61 (2005). [hep-ph/0503188]

    Google Scholar 

  119. Kotikov, A.V., Velizhanin, V.N.: Analytic continuation of the Mellin moments of deep inelastic structure functions. [hep-ph/0501274]

    Google Scholar 

  120. Blümlein, J., Riemann, T., Schneider, C.: DESY Annual Report (2013)

    Google Scholar 

Download references

Acknowledgements

We would like to thank D. Broadhurst, F. Brown, A. De Freitas, E.W.N. Glover, A. Hasselhuhn, D. Kreimer, C. Raab, C. Schneider, S. Weinzierl, F. Wißbrock, and J. Vermaseren for discussions. This work has been supported in part by DFG Sonderforschungsbereich Transregio 9, Computergestützte Theoretische Teilchenphysik, by the Austrian Science Fund (FWF) grants P20347-N18, P22748-N18, SFB F50 (F5009-N15) and by the EU Network LHCPHENOnet PITN-GA-2010-264564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Blümlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Ablinger, J., Blümlein, J. (2013). Harmonic Sums, Polylogarithms,Special Numbers, and Their Generalizations. In: Schneider, C., Blümlein, J. (eds) Computer Algebra in Quantum Field Theory. Texts & Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1616-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1616-6_1

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1615-9

  • Online ISBN: 978-3-7091-1616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics