Advertisement

Anwendung von Robotern in der Neurorehabilitation

  • Volker Dietz
Chapter

Bei Patienten mit einer Bewegungsstörung nach Rückenmarkläsion (oder Schlaganfall) kann durch ein intensives funktionelles Training eine Verbesserung der Hand- und Gehfunktion erreicht werden. Nach einer Querschnittlähmung oder einem Schlaganfall zeigen die neuronalen Zentren unterhalb der Läsion eine Plastizität, die durch spezifische Trainingsformen genutzt werden kann. So können spinale Lokomotionszentren durch adäquate Reize aktiviert werden. Das Training besteht aus unterstützten Greifbewegungen oder durch Roboter assistierten Gehbewegungen der betroffenen Beine, während die Patienten mit Körperunterstützung auf einem sich bewegenden Laufband stehen. Die Patienten profitieren von einem solchen Training insoweit, dass sie beispielsweise lernen, auf natürlichem Grund zu gehen. Rückmeldesignale von Kraft- und Hüftgelenksrezeptoren sind von erheblicher Bedeutung für die Generierung des Lokomotionsmusters, d. h. einer adäquaten Beinmuskelaktivierung, und somit für den Effekt...

Literatur

  1. Banala SK, Kim SH, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17:2–8PubMedCrossRefGoogle Scholar
  2. Barbeau H, Rossignol S (1994) Enhancement of locomotor recovery following spinal cord injury. Curr Opin Neurol 7:517–524PubMedCrossRefGoogle Scholar
  3. Barbeau H, Visintin M (2003) Optimal outcomes obtained with body‐weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil 84:1458–1465PubMedCrossRefGoogle Scholar
  4. Barbeau H, Wainberg M, Finch L (1987) Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput 25:341–344PubMedCrossRefGoogle Scholar
  5. Beer S, Aschbacher B, Manoglou D, Gamper E, Kool J, Kesselring J (2008) Robot‐assisted gait training in multiple sclerosis: a pilot randomized trial. Mult Scler 14:231–236PubMedCrossRefGoogle Scholar
  6. Borggraefe I, Meyer-Heim A, Kumar A, Schaefer JS, Berweck S, Heinen F (2008) Improved gait parameters after robotic‐assisted locomotor treadmill therapy in a 6‐year‐old child with cerebral palsy. Mov Disord 23:280–283PubMedCrossRefGoogle Scholar
  7. Calancie B, Needham-Shropshire B, Jacobs P, Willer K, Zych G, Green BA (1994) Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain 117:1143–1159PubMedCrossRefGoogle Scholar
  8. Colombo G, Joerg M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37:693–700PubMedGoogle Scholar
  9. Dietz V (1992) Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev 72:33–69PubMedGoogle Scholar
  10. Dietz V (1995) Locomotor training in paraplegic patients. Ann Neurol 38:965PubMedCrossRefGoogle Scholar
  11. Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3:781–790PubMedCrossRefGoogle Scholar
  12. Dietz V (2006) Good clinical practice in neurorehabilitation. Lancet Neurol 5:377–378PubMedCrossRefGoogle Scholar
  13. Dietz V (2008) Body weight supported gait training: from laboratory to clinical setting. Brain Res Bull 76:459–463PubMedCrossRefGoogle Scholar
  14. Dietz V, Harkema SJ (2004) Locomotor activity in spinal cord‐injured persons. J Appl Physiol 96:1954–1960PubMedCrossRefGoogle Scholar
  15. Dietz V, Sinkjaer T (2007) Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol 6:725–733PubMedCrossRefGoogle Scholar
  16. Dietz V, Muller R, Colombo G (2002) Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125:2626–2634PubMedCrossRefGoogle Scholar
  17. Dobkin BH, Harkema S, Requejo P, Edgerton VR (1995) Modulation of locomotor‐like EMG activity in subjects with complete and incomplete spinal cord injury. J Neurol Rehabil 9:183–190PubMedGoogle Scholar
  18. Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D et al (2007) The evolution of walking‐related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabil Neural Repair 21:25–35PubMedCentralPubMedCrossRefGoogle Scholar
  19. Edgerton VR, Roy RR (2009) Robotic training and spinal cord plasticity. Brain Res Bull 78:4–12PubMedCentralPubMedCrossRefGoogle Scholar
  20. Edgerton VR, de Leon RD, Tillakaratne N, Recktenwald MR, Hodgson JA, Roy RR (1997) Use‐dependent plasticity in spinal stepping and standing. Adv Neurol 72:233–247PubMedGoogle Scholar
  21. Gonzenbach RR, Gasser P, Zorner B, Hochreutener E, Dietz V, Schwab ME (2010) Nogo‐A antibodies and training reduce muscle spasms in spinal cord‐injured rats. Ann Neurol 68:48–57PubMedCrossRefGoogle Scholar
  22. Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR (1997) Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 77:797–811PubMedGoogle Scholar
  23. Hesse S, Werner C (2003) Partial body weight supported treadmill training for gait recovery following stroke. Adv Neurol 92:423–428PubMedGoogle Scholar
  24. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH et al (2009) Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 23:5–13PubMedCrossRefGoogle Scholar
  25. Hornby TG, Zemon DH, Campbell D (2005) Robotic‐assisted, body‐weight‐supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther 85:52–66PubMedGoogle Scholar
  26. Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR (2008) Enhanced gait‐related improvements after therapist‐ versus robotic‐assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 39:1786–1792PubMedCrossRefGoogle Scholar
  27. Husemann B, Muller F, Krewer C, Heller S, Koenig E (2007) Effects of locomotion training with assistance of a robot‐driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 38:349–354PubMedCrossRefGoogle Scholar
  28. Israel JF, Campbell DD, Kahn JH, Hornby TG (2006) Metabolic costs and muscle activity patterns during robotic‐ and therapist‐assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther 86:1466–1478PubMedCrossRefGoogle Scholar
  29. Katoh S, el Masry WS (1994) Neurological recovery after conservative treatment of cervical cord injuries. J Bone Joint Surg Br 76:225–228PubMedGoogle Scholar
  30. Kelly-Hayes M, Robertson JT, Broderick JP, Duncan PW, Hershey LA, Roth EJ et al (1998) The American Heart Association Stroke Outcome Classification: executive summary. Circulation 97:2474–2478PubMedCrossRefGoogle Scholar
  31. Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot‐aided neurorehabilitation. IEEE transactions on rehabilitation engineering : a publication of the IEEE Engin Med Biol Soc 6:75–87CrossRefGoogle Scholar
  32. Kuhn RA (1950) Functional capacity of the isolated human spinal cord. Brain 73:1–51PubMedCrossRefGoogle Scholar
  33. Lewek MD, Cruz TH, Moore JL, Roth HR, Dhaher YY, Hornby TG (2009) Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther 89:829–839PubMedCentralPubMedCrossRefGoogle Scholar
  34. Lo AC, Triche EW (2008) Improving gait in multiple sclerosis using robot‐assisted, body weight supported treadmill training. Neurorehabil Neural Repair 22:661–671PubMedCrossRefGoogle Scholar
  35. Lovely RG, Gregor RJ, Roy RR, Edgerton VR (1990) Weight‐bearing hindlimb stepping in treadmill‐exercised adult spinal cats. Brain Res 514:206–218PubMedCrossRefGoogle Scholar
  36. Lovely RG, Gregor RJ, Roy RR, Edgerton VR (1986) Effects of training on the recovery of full‐weight‐bearing stepping in the adult spinal cat. Exp Neurol 92:421–435PubMedCrossRefGoogle Scholar
  37. Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L (2007) Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair 21:307–314PubMedCrossRefGoogle Scholar
  38. Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME, Dietz V (2000) Validation of the weight‐drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 17:1–17PubMedCrossRefGoogle Scholar
  39. Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser FH, Colombo G et al (2007) Feasibility of robotic‐assisted locomotor training in children with central gait impairment. Dev Med Child Neurol 49:900–906PubMedCrossRefGoogle Scholar
  40. Meyer-Heim A, Ammann-Reiffer C, Schmartz A, Schafer J, Sennhauser FH, Heinen F et al (2009) Improvement of walking abilities after robotic‐assisted locomotion training in children with cerebral palsy. Arch Dis Child 94:615–620PubMedCrossRefGoogle Scholar
  41. Micera S, Carrozza M (2005) A simple robotic system for neurorehabilitation. Auton Robots 19:271–284CrossRefGoogle Scholar
  42. Moseley AM, Stark A, Cameron ID, Pollock A (2003) Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev CD002840Google Scholar
  43. Nef T, Guidali M, Riener R (2009) ARMin III – arm therapy exoskeleton wirh an ergonomic shoulder actuation. Appl Bionic Biomech 6:127–142CrossRefGoogle Scholar
  44. Nooijen CF, Ter Hoeve N, Field-Fote EC (2009) Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil 6:3CrossRefGoogle Scholar
  45. Pearson KG (2000) Neural adaptation in the generation of rhythmic behavior. Ann Rev Physiol 62:723–753CrossRefGoogle Scholar
  46. Pearson KG, Collins DF (1993) Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J Neurophysiol 70:1009–1017PubMedGoogle Scholar
  47. Popovic MR, Curt A, Keller T, Dietz V (2001) Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord 39:403–412PubMedCrossRefGoogle Scholar
  48. Querry RG, Pacheco F, Annaswamy T, Goetz L, Winchester PK, Tansey KE (2008) Synchronous stimulation and monitoring of soleus H reflex during robotic body weight‐supported ambulation in subjects with spinal cord injury. J Rehabil Res Dev 45:175–186PubMedCrossRefGoogle Scholar
  49. Riener R, Lünenburger L, Maier IC, Colombo G, Dietz V (2010) Locomotor Training in Subjects with Sensori‐Motor Deficits: An Overview of the Robotic Gait Orthosis Lokomat. J Healthcare Engin 1:197–216CrossRefGoogle Scholar
  50. Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T et al (2006) Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity‐reduced environment. IEEE Transact Neural Systems Rehabil Engin. IEEE Engin Med Biol Soc 14:378–389Google Scholar
  51. Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 76:319–370PubMedGoogle Scholar
  52. Sherman MF, Lam T, Sheel AW (2009) Locomotor‐respiratory synchronization after body weight supported treadmill training in incomplete tetraplegia: a case report. Spinal Cord 47:896–898PubMedCrossRefGoogle Scholar
  53. Teasell RW, Bhogal SK, Foley NC, Speechley MR (2003) Gait retraining post stroke. Top Stroke Rehabil 10:34–65PubMedGoogle Scholar
  54. Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE (1998) A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 29:1122–1128PubMedCrossRefGoogle Scholar
  55. Waters RL, Adkins R, Yakura J, Sie I (1998) Donal Munro Lecture: Functional and neurologic recovery following acute SCI. J Spinal Cord Med 21:195–199PubMedGoogle Scholar
  56. Wernig A, Muller S (1992) Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 30:229–238PubMedCrossRefGoogle Scholar
  57. Wernig A, Nanassy A, Muller S (1999) Laufband (treadmill) therapy in incomplete paraplegia and tetraplegia. J Neurotrauma 16:719–726PubMedCrossRefGoogle Scholar
  58. Westlake KP, Patten C (2009) Pilot study of Lokomat versus manual‐assisted treadmill training for locomotor recovery post‐stroke. J Neuroeng Rehabil 6:18PubMedCentralPubMedCrossRefGoogle Scholar
  59. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V et al (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 86:672–680PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Volker Dietz
    • 1
  1. 1.Uniklinik BalgristZürichSchweiz

Personalised recommendations