Advertisement

Aktueller Stand der Forschung

  • Armin Curt
  • Martina Schenker
Chapter

Das vorliegende Kapitel will und kann keinen umfassenden Überblick über den aktuellen Stand der Forschung für Patienten mit Querschnittlähmung vermitteln, sondern betrachtet einige der derzeit auch in der Laienpresse vielfach diskutierten möglichen Behandlungsansätze. Es soll eine Einschätzung über das Potenzial neuer Therapiemöglichkeiten vermitteln, welche derzeit im Rahmen von klinischen Studien untersucht werden. Geeignet sind hierfür vor allem Ergebnisse aus der unmittelbaren translationalen Forschung (die Übertragung der Studien vom Tier auf den Menschen), welche die Resultate vom Tiermodell angemessen und erfolgreich auf den Menschen zu übertragen sucht. Sie zielt darauf ab, erste Einblicke am Menschen zu gewinnen, um die Wirkungsweise und Effizienz neuer Behandlungen sicher und sensitiv nachweisen zu können. Die Patientensicherheit steht dabei allerdings im Vordergrund.

Anatomische Grundlagen und Pathophysiologie der Querschnittlähmung

Bei einer Querschnittlähmung kommt es zu...

Literatur

  1. Anderson AJ, Haus DL, Hooshmand MJ, Perez H, Sontag CJ, Cummings BJ (2011) Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med 6:367–406PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ankeny DP, McTigue DM, Jakeman LB (2004) Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol 190:17–31PubMedCrossRefGoogle Scholar
  3. Barbeau H, Rossignol S (1991) Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res 546:250–260PubMedCrossRefGoogle Scholar
  4. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640PubMedCrossRefGoogle Scholar
  5. Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ (2012) Results of a phase II placebo‐controlled randomized trial of minocycline in acute spinal cord injury. Brain 135:122–1236CrossRefGoogle Scholar
  6. Chernykh ER, Stupak VV, Muradov GM, Sizikov MYU, Shevela EY, Leplina OY, Tikhonova MA, Kulagin AD, Lisukov IA, Ostanin AA (2007) Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med 143:543–547PubMedCrossRefGoogle Scholar
  7. Cizkova D, Novotna I, Slovinska L, Vanicky I, Jergova S, Rosocha J, Radonak J (2011) Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J Neurotrauma 28:1951–1961PubMedCrossRefGoogle Scholar
  8. Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12:1333–1342PubMedCentralPubMedCrossRefGoogle Scholar
  9. Curt A (2012) Human neural stem cells in chronic spinal cord injury. Expert Opin Biol Ther 12:271–273PubMedCrossRefGoogle Scholar
  10. Deumens R, Koopmans GC, Joosten EA (2005) Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol 77:57–89PubMedCrossRefGoogle Scholar
  11. Dietz V (2012) Neuronal plasticity after a human spinal cord injury: positive and negative effects. Exp Neurol 235:110–115PubMedCrossRefGoogle Scholar
  12. Dietz V, Curt A (2012) Translating preclinical approaches into human application. Spinal Cord Injuries E‐Book: Handbook of Clinical Neurology Series 109:399–408Google Scholar
  13. Dietz V, Harkema SJ (2004) Locomotor activity in spinal cord‐injured persons. J Appl Physiol 96:1954–1960PubMedCrossRefGoogle Scholar
  14. Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, Bartlett PF, Blight AR, Dietz V, Ditunno J (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45:190–205PubMedCrossRefGoogle Scholar
  15. Fedirchuk B, Nielsen J, Petersen N, Hultborn H (1998) Pharmacologically evoked fictive motor patterns in the acutely spinalized marmoset monkey (Callithrix jacchus). Exp Brain Res 122:351–361PubMedCrossRefGoogle Scholar
  16. Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, Kwon BK, Chapman J, Yee A, Tighe A, McKerracher L (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28:787–796PubMedCrossRefGoogle Scholar
  17. Feraboli-Lohnherr D, Barthe JY, Orsal D (1999) Serotonin‐induced activation of the network for locomotion in adult spinal rats. J Neurosci Res 55:87–98PubMedCrossRefGoogle Scholar
  18. Filli L, Schwab ME (2012) The rocky road to translation in spinal cord repair. Ann Neurol 72:491–501PubMedCrossRefGoogle Scholar
  19. Forssberg H, Grillner S (1973) The locomotion of the acute spinal cat injected with clonidine i.v. Brain Res 50:184–186PubMedCrossRefGoogle Scholar
  20. Fouad K, Klusman I, Schwab ME (2004) Regenerating corticospinal fibers in the Marmoset (Callitrix jacchus) after spinal cord lesion and treatment with the anti‐Nogo‐A antibody IN‐1. Eur J Neurosci 20:2479–2482PubMedCrossRefGoogle Scholar
  21. Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, Rouiller EM (2006) Nogo‐A‐specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med 12:790–792PubMedCrossRefGoogle Scholar
  22. Galtrey CM, Asher RA, Nothias F, Fawcett JW (2007) Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. Brain 130:926–939PubMedCrossRefGoogle Scholar
  23. GrandPré T, Li S, Strittmatter SM (2002) Nogo‐66 receptor antagonist peptide promotes axonal regeneration. Nature 417:547–551PubMedCrossRefGoogle Scholar
  24. Grossman RG, Fehlings MG, Frankowski RF, Burau KD, Chow DSL, Tator C, Teng A, Toups EG, Harrop JS, Aarabi B, Shaffrey CI, Johnson MM, Harkema SJ, Boakye M, Guest JD, Wilson JR (2014) A Prospective, Multicenter, Phase I Matched‐Comparison Group Trial of Safety, Pharmacokinetics, and Preliminary Efficacy of Riluzole in Patients with Traumatic Spinal Cord Injury. J Neurotrauma 31:239–255PubMedCentralPubMedCrossRefGoogle Scholar
  25. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377:1938–1947PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hawryluk GW, Rowland J, Kwon BK, Fehlings MG (2008) Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 25:E14PubMedCrossRefGoogle Scholar
  27. Hollis ER, Jamshidi P, Löw K, Blesch A, Tuszynski MH (2009) Induction of corticospinal regeneration by lentiviral trkB‐induced Erk activation. Proc Natl Acad Sci USA 106:7215–7220PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hubli M, Dietz V (2013) The physiological basis of neurorehabilitation‐locomotor training after spinal cord injury. JNER 10:5PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hurlbert RJ, Hamilton MG (2008) Methylprednisolone for acute spinal cord injury: 5‐year practice reversal. Can J Neurol Sci 35:41–45PubMedCrossRefGoogle Scholar
  30. Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR (2005) Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett 383:339–344PubMedCrossRefGoogle Scholar
  31. Lammertse DP (2013) Clinical trials in spinal cord injury: lessons learned on the path to translation. The 2011 International Spinal Cord Society Sir Ludwig Guttmann Lecture. Spinal Cord 51:2–9PubMedCrossRefGoogle Scholar
  32. Lammertse DP, Jones LA, Charlifue SB, Kirshblum SC, Apple DF, Ragnarsson KT, Falci SP, Heary RF, Choudhri TF, Jenkins AL, Betz RR, Poonian D, Cuthbert JP, Jha A, Snyder DA, Knoller N (2012) Autologous incubated macrophage therapy in acute, complete spinal cord injury: results of the phase 2 randomized controlled multicenter trial. Spinal Cord 50:661–671PubMedCrossRefGoogle Scholar
  33. Lima C, Escada P, Pratas-Vital J, Branco C, Arcangeli CA, Lazzeri G, Maia CAS, Capucho C, Hasse-Ferreira A, Peduzzi JD (2010) Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair 24:10–22PubMedCrossRefGoogle Scholar
  34. Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M, Tessler A, Fischer I (1999) Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci 19:4370–4387PubMedGoogle Scholar
  35. Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–1081PubMedCentralPubMedCrossRefGoogle Scholar
  36. Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, Fronek P, Gray C, Kerr G, Licina P (2008) Autologous olfactory ensheating cell transplantation in human paraplegia: A 3 year clinical trial. Brain 131:2376–2386PubMedCentralPubMedCrossRefGoogle Scholar
  37. Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME, Dietz V (2000) Validation of the weight‐drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 17:1–17PubMedCrossRefGoogle Scholar
  38. Miao T, Wu D, Zhang Y, Bo X, Subang MC, Wang P, Richardson PM (2006) Suppressor of cytokine signaling‐3 suppresses the ability of activated signal transducer and activator of transcription‐3 to stimulate neurite growth in rat primary sensory neurons. J Neurosci 26:9512–9519PubMedCrossRefGoogle Scholar
  39. Nathan PW (1994) Effects on movement of surgical incisions into the human spinal cord. Brain 117: 337‐46Google Scholar
  40. Nogradi A, Szabo A, Pinter S, Vrbova G (2007) Delayed riluzole treatment is able to rescue injured rat spinal motoneurons. Neuroscience 144:431–438PubMedCrossRefGoogle Scholar
  41. Raineteau O, Schwab ME (2001) Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2:263–273PubMedCrossRefGoogle Scholar
  42. Raisman G (2003) A promising therapeutic approach to spinal cord repair. J R Soc Med 96:259–261PubMedCentralPubMedCrossRefGoogle Scholar
  43. Reier (2004) Cellular Transplantation Strategies for Spinal Cord Injury and Translational Neurobiology. NeuroRx 1:424–451PubMedCentralPubMedCrossRefGoogle Scholar
  44. Saberi H, Moshayedi P, Aghayan HR, Arjmand B, Hosseini S-K, Emami-Razavi S-H, Rahimi-Movaghar V, Raza M, Firouzi M (2008) Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett 443:46–50PubMedCrossRefGoogle Scholar
  45. Salazar DL, Uchida N, Hamers FPT, Cummings BJ, Anderson AJ (2010) Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD‐scid mouse model. PLoS One 5:e12272PubMedCentralPubMedCrossRefGoogle Scholar
  46. Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin‐associated neurite growth inhibitors. Nature 343:269–272PubMedCrossRefGoogle Scholar
  47. Schnell L, Schneider R, Kolbeck R, Barde Y-A, Schwab ME (1994) Neurotrophin‐3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173PubMedCrossRefGoogle Scholar
  48. Schwartz G, Fehlings MG (2001) Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 94:245–256PubMedGoogle Scholar
  49. Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal die‐ back, and improves functional outcome after spinal cord injury. J Neurosci 24:2182–2190PubMedCrossRefGoogle Scholar
  50. Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yanker BA (2011) Sustained axon regeneration induced by co‐deletion of PTEN and SOCS3. Nature 480:372–375PubMedCentralPubMedCrossRefGoogle Scholar
  51. Uchida N, Chen K, Dohse M, Hansen KD, Dean J, Buser JR, Riddle A, Beardsley DJ, Wan Y, Gong X, Nguyen T, Cummings BJ, Anderson AJ, Tamaki SJ, Tsukamoto A, Weissman IL, Matsumoto SG, Sherman LS, Kroenke CD, Back SA (2012) Human neural stem cells induce functional myelination in mice with severe dysmyelination. Sci Transl Med 4:155ra136PubMedCrossRefGoogle Scholar
  52. Wells JE, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126:1628–1637PubMedCrossRefGoogle Scholar
  53. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 86:672–680PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Armin Curt
    • 1
  • Martina Schenker
    • 1
  1. 1.Zentrum für ParaplegieUniklinik BalgristZürichSchweiz

Personalised recommendations