Advertisement

Einführung in das Herz-Kreislauf-System

  • Herbert LöllgenEmail author
  • Norbert Bachl
  • Christian Lorenz
  • Eric Schulze-Bahr
  • Ruth Löllgen
  • Eszter Csajági
  • Fabio Pigozzi
Chapter

Zusammenfassung

Herz-Kreislauf und Atmung sind Systeme, die jede Zelle des menschlichen Körpers, so auch die arbeitende Skelettmuskulatur, mit Sauerstoff und energiereichen Substraten für den aeroben Stoffwechsel versorgen und Stoffwechselendprodukte zur Metabolisierung transportieren. Sie unterliegen einer Gesetzmäßigkeit zur Funktions- (Prävention) und Morphologie-Maximierung, auch bei langdauernder körperlicher Inaktivität, nach Erkrankungen und Verletzungen. In den physiologischen und pathologischen Regelkreisen der Organsysteme sind Hormone, Substrate, Enzyme, Zytokine, und Botenstoffe auf molekularer Ebene (z. B. miRNA), eingeschaltet, um funktionelle Abläufe zu steuern. In diesem Kapitel wird von einfachen physiologischen Abläufen des Herz-Kreislaufsystems auf morphologische Veränderungen eingegangen, welche bei regelmäßiger körperliche Aktivität und Training erfolgen. Diese Regulations- und Adaptationsmechanismen werden hinsichtlich der prädisponierenden genetischen Voraussetzung wie auch der molekularen Abläufe dargestellt. Aufgrund der zentralen Bedeutung des Herzens wird auf physiologische und pathologische Veränderungen funktioneller wie morphologischer Art eingegangen. Es werden die wesentlichen diagnostischen Kriterien von EKG und der Ergometrie besprochen. Dazu gehören auch jene Gene, welche für Herz-Kreislauf-Erkrankungen verantwortlich sind und in Kap. 16 ausführlich dargestellt werden.

Literatur

  1. [1]
    Fletcher GF et al. (2013) Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 128(8): p. 873–934CrossRefPubMedGoogle Scholar
  2. [2]
    Löllgen H, Erdmann E, Gitt A (2009) Ergometrie: Belastungsuntersuchungen in Klinik und Praxis. Vol. 3.. SpringerGoogle Scholar
  3. [3]
    Salminen A, Vihko V (1983) Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation in vitro. Acta Physiol Scand. 117(1): p. 109–13CrossRefPubMedGoogle Scholar
  4. [4]
    Tittel K (1999) Beschreibende und funktionelle Anatomie des Menschen Vol. 12. München: Urban & FischerGoogle Scholar
  5. [5]
    Appell H-J, Stang-Voss C, Battermann N (2008) Funktionelle Anatomie, Grundlagen sportlicher Leistung und Bewegung. 4., vollst. überarb. Aufl. Heidelberg: Springer Medizin-Verl. XII, 179 SGoogle Scholar
  6. [6]
    Lentner C (1990) Geigy scientific tables: Heart and circulation. Geigy scientific tables, ed. C. Lentner. Vol. 5. Minnesota: Ciba-GeigyGoogle Scholar
  7. [7]
    Noble MI, Drake-Holland AJ, Vink H (2008) Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM. 101(7): p. 513–8CrossRefPubMedGoogle Scholar
  8. [8]
    Schmidt-Trucksäss A, Huonker M, Halle M, Dickhuth HH, Sandrock M (2008) Einfluss der körperlichen Aktivität auf die Arterienwand. Deutsche Zeitschrift für Sportmedizin. 59(9): p. 200–205Google Scholar
  9. [9]
    Markl J et al. (2012) Purves, Biologie. Heidelberg: Springer SpektrumGoogle Scholar
  10. [10]
    Drexler H, Haller H, Landmesser U (2003) Endothelfunktion und kardiovaskuläre Erkrankungen. Vol. 2. UNI-MED-VerlagGoogle Scholar
  11. [11]
    Roskamm H (2004) Arbeitsweise des gesunden Herzens. Herzkrankheiten: Pathophysiologie, Diagnostik, Therapie ed. Roskamm H, Neumann FJ, Kalusche D, Bestehorn HP. SpringerGoogle Scholar
  12. [12]
    Schmidt RF (2007) Physiologie des Menschen, mit Pathophysiologie; mit 77 Tabellen; [+ IMPP-Fragen Physiologie online]. 30., neu bearb. und aktualisierte Aufl. Heidelberg: Springer. XXII, 1030 SCrossRefGoogle Scholar
  13. [13]
    Baggish AL, Wood MJ (2011) Athlete's heart and cardiovascular care of the athlete: scientific and clinical update. Circulation. 123(23): p. 2723–35CrossRefPubMedGoogle Scholar
  14. [14]
    Glagov S et al. (1988) Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med. 112(10): p. 1018–31PubMedGoogle Scholar
  15. [15]
    Schmidt-Trucksäss A (2007) Gefäßerkrankungen und Sport, in: Sportmedizin für Ärzte, Lehrbuch auf der Grundlage des Weiterbildungssystems der Deutschen Gesellschaft für Sportmedizin und Prävention (DGSP) Dickhuth F, Röcker K, Berg A (Hrsg.). Deutscher Ärzte-Verlag: Köln. p. 111–113Google Scholar
  16. [16]
    Schmidt RF (2007) Physiologie des Menschen mit Pathophysiologie. 30., überarb. u. aktualisierte Aufl. Springer Berlin Heidelberg, S. 595CrossRefGoogle Scholar
  17. [17]
    Löllgen H (2005) Kardiopulmonale Funktionsdiagnostik. Vol. 4. NovartisGoogle Scholar
  18. [18]
    Löllgen H, Löllgen R (2012) Ergometry, in Encyclopedia of Exercise Medicine in Health and Disease, F.C. Mooren, Editor. Springer: HeidelbertGoogle Scholar
  19. [19]
    Holloszy JO (1975) Adaptation of skeletal muscle to endurance exercise. Med Sci Sports. 7(3): p. 155–64PubMedGoogle Scholar
  20. [20]
    König K (1980) in: Normal Values in Adults Ergometry According to Age, Sex and Training, D.H. M.R. Rulli V., Editor. 1980, Soc. Europea di Cardiologia: Rom. p. 81Google Scholar
  21. [21]
    Dickhuth H-H, Mayer F, Röcker K, Berg A (2007) Sportmedizin für Ärzte: Lehrbuch auf der Grundlage des Weiterbildungssystems der Deutschen Gesellschaft für Sportmedizin und Prävention (DGSP). Deutscher ÄrzteverlagGoogle Scholar
  22. [22]
    Utomi V et al. (2013) Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete's heart. Heart. 99(23): p. 1727–33CrossRefPubMedGoogle Scholar
  23. [23]
    Fuster V, Alexander RW, O'Rourke RA, Roberts R, King SB, Wellens H (2001) Hurst's the Heart. 10 ed. McGraw-Hill ProfessionalGoogle Scholar
  24. [24]
    Haggart CR et al. (2014) Effects of stretch and shortening on gene expression in intact myocardium. Physiol Genomics. 46(2): p. 57–65CrossRefPubMedGoogle Scholar
  25. [25]
    Watson PA (1996) Mechanical activation of signaling pathways in the cardiovascular system. Trends Cardiovasc Med. 6(3): p. 73–9CrossRefPubMedGoogle Scholar
  26. [26]
    Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 12(4): p. 1681–92PubMedPubMedCentralGoogle Scholar
  27. [27]
    Newton-Cheh C et al. (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 41(6): p. 666–76CrossRefPubMedPubMedCentralGoogle Scholar
  28. [28]
    Ackerman MJ et al. (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 8(8): p. 1308–39CrossRefPubMedGoogle Scholar
  29. [29]
    Cerrone M, Priori SG (2011) Genetics of sudden death: focus on inherited channelopathies. Eur Heart J. 32(17): p. 2109–18CrossRefPubMedGoogle Scholar
  30. [30]
    Crotti L (2011) Genetic predisposition to sudden cardiac death. Curr Opin Cardiol. 26(1): p. 46–50CrossRefPubMedGoogle Scholar
  31. [31]
    Engberding R. et al. (2010) Isolated non-compaction cardiomyopathy. Dtsch Arztebl Int. 107(12): p. 206–13PubMedPubMedCentralGoogle Scholar
  32. [32]
    Ferrari P, Bianchi G (2000) The genomics of cardiovascular disorders: therapeutic implications. Drugs. 59(5): p. 1025–42CrossRefPubMedGoogle Scholar
  33. [33]
    Ganesh SK et al. (2013) Genetics and genomics for the prevention and treatment of cardiovascular disease: update: a scientific statement from the American Heart Association. Circulation. 128(25): p. 2813–51CrossRefPubMedGoogle Scholar
  34. [34]
    Gerull B. et al. (2004) Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet. 36(11): p. 1162–4CrossRefPubMedGoogle Scholar
  35. [35]
    Hershberger RE et al. (2009) Genetic evaluation of cardiomyopathy – a Heart Failure Society of America practice guideline. J Card Fail. 15(2): p. 83–97CrossRefPubMedGoogle Scholar
  36. [36]
    Hershberger RE et al. (2010) Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet. 3(2): p. 155–61CrossRefPubMedPubMedCentralGoogle Scholar
  37. [37]
    Hoedemaekers, Y.M. et al. () Cardiac beta-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur Heart J, 2007. 28(22): p. 2732–7CrossRefPubMedGoogle Scholar
  38. [38]
    Maron BJ, Maron MS, Semsarian C (2012) Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 60(8): p. 705–15CrossRefPubMedGoogle Scholar
  39. [39]
    Morimoto S (2008) Sarcomeric proteins and inherited cardiomyopathies. Cardiovasc Res. 77(4): p. 659–66CrossRefPubMedGoogle Scholar
  40. [40]
    Noseworthy PA, Newton-Cheh C (2008) Genetic determinants of sudden cardiac death. Circulation. 118(18): p. 1854–63CrossRefPubMedGoogle Scholar
  41. [41]
    Priori SG, Zipes DP (2006) Sudden cardiac death. A handbook for clinical practice. Blackwell PublishingGoogle Scholar
  42. [42]
    Probst S et al. (2011) Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet. 4(4): p. 367–74CrossRefPubMedGoogle Scholar
  43. [43]
    Richard P et al. (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 107(17): p. 2227–32CrossRefPubMedGoogle Scholar
  44. [44]
    Roden D (2009) Cardiovasciular genetics and genomics. Blackwell PublishingGoogle Scholar
  45. [45]
    Sen-Chowdhry S et al. (2010) Mutational heterogeneity, modifier genes, and environmental influences contribute to phenotypic diversity of arrhythmogenic cardiomyopathy. Circ Cardiovasc Genet. 3(4): p. 323–30CrossRefPubMedGoogle Scholar
  46. [46]
    Sidhu, J. and R. Roberts, Genetic basis and pathogenesis of familial WPW syndrome. Indian Pacing Electrophysiol J, 2003. 3(4): p. 197–201PubMedPubMedCentralGoogle Scholar
  47. [47]
    Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 83(6): p. 1849–65CrossRefPubMedGoogle Scholar
  48. [48]
    Friehs I et al. (2013) Pressure-overload hypertrophy of the developing heart reveals activation of divergent gene and protein pathways in the left and right ventricular myocardium. Am J Physiol Heart Circ Physiol. 304(5): p. H697–708CrossRefPubMedGoogle Scholar
  49. [49]
    Asakura M, Kitakaze M (2009) Global gene expression profiling in the failing myocardium. Circ J. 73(9): p. 1568–76CrossRefPubMedGoogle Scholar
  50. [50]
    Levy D. et al. (2009) Genome-wide association study of blood pressure and hypertension. Nat Genet. 41(6): p. 677–87CrossRefPubMedPubMedCentralGoogle Scholar
  51. [51]
    Cooper GT (1987) Cardiocyte adaptation to chronically altered load. Annu Rev Physiol,. 49: p. 501–18CrossRefPubMedGoogle Scholar
  52. [52]
    Yamazaki T, Komuro I, Yazaki Y (1999) Role of the renin-angiotensin system in cardiac hypertrophy. Am J Cardiol. 83(12A): p. 53H–57HCrossRefPubMedGoogle Scholar
  53. [53]
    Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 64: p. 403–34CrossRefPubMedGoogle Scholar
  54. [54]
    Sugden PH, Bogoyevitch MA (1995) Intracellular signalling through protein kinases in the heart. Cardiovasc Res. 30(4): p. 478–92CrossRefPubMedGoogle Scholar
  55. [55]
    McPherson R. et al. (2007) A common allele on chromosome 9 associated with coronary heart disease. Science. 316(5830): p. 1488–91CrossRefPubMedPubMedCentralGoogle Scholar
  56. [56]
    International Consortium for Blood Pressure Genome-Wide Association, S. et al. (2001) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 478(7367): p. 103–9Google Scholar
  57. [57]
    Consortium CAD et al. (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 45(1): p. 25–33Google Scholar
  58. [58]
    Schunkert H et al. (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 43(4): p. 333–8CrossRefPubMedPubMedCentralGoogle Scholar
  59. [59]
    Williams RR et al. (1990) Genetics of hypertension: what we know and don't know. Clin Exp Hypertens A. 12(5): p. 865–76PubMedGoogle Scholar
  60. [60]
    Thews G, Vaupel P (2005) Vegetative Physiologie, mit 64 Tabellen. 5., aktualisierte Aufl. ed. Berlin [u. a.]: Springer. XV, 619 SGoogle Scholar
  61. [61]
    Rubert M, Zipes DP (2012) Genesis of Cardiac Arrhythmias: Electrophysiologic Considerations, in Braunwald's Heart Disease – A Textbook of Cardiovascular Medicine, M. R.O. Bonow, D.L, Zipes, D.P., Libby, P., Editor. Elsevier Saunders: Philadelphia. p. 653–684Google Scholar
  62. [62]
    Piper H (2007) Herzerregung,in Physiologie Des Menschen: Mit Pathophysiologie, L. R.F. Schmidt, F., Editor. Springer: LondonGoogle Scholar
  63. [63]
    Olshansky B, Sullivan RM (2013) Inappropriate sinus tachycardia. J Am Coll Cardiol. 61(8): p. 793–801CrossRefPubMedGoogle Scholar
  64. [64]
    Opie LH, Hasenfuss G (2012) Mechanisms of Cardiac Contraction and Relaxation, in Braunwald's Heart Disease – A Textbook of Cardiovascular Medicine, M. R.O. Bonow, D.L., Zipes, D.P., Libby, P., Editor. Elsevier Saunders: Philadelphia. p. 459–486Google Scholar
  65. [65]
    Berbalk A, Boldt F, Hansel J, Horstmann T, Huonker M, Löllgen H, Mooren F-C, Nührenbörger C, Schmitt H, Urhausen A (2007) Leitlinie. Vorsorgeuntersuchung im Sport. Available from: http://www.dgsp.de/_downloads/allgemein/leitlinie_vorsorgeuntersuchung_4.10.2007-1-19.pdf
  66. [66]
    Löllgen H, Graham T, Sjogaard G (1980) Muscle metabolites, force, and perceived exertion bicycling at varying pedal rates. Med Sci Sports Exerc. 12(5): p. 345–51CrossRefPubMedGoogle Scholar
  67. [67]
    Froelicher VF, Myers J (2006) Exercise and the Heart. 5 ed. 2006: SaundersGoogle Scholar
  68. [68]
    Kokkinos P et al. (2010) Exercise capacity and mortality in older men: a 20-year follow-up study. Circulation. 122(8): p. 790–7CrossRefPubMedGoogle Scholar
  69. [69]
    Vanhees L et al. (1994) Prognostic significance of peak exercise capacity in patients with coronary artery disease. J Am Coll Cardiol. 23(2): p. 358–63CrossRefPubMedGoogle Scholar
  70. [70]
    Löllgen H (2003) Primärprävention kardialer Erkrankungen: Stellenwert der körperlichen Aktivität. Deutsches Ärzteblatt. 100(15): p. A–987/B–828/C–773Google Scholar
  71. [71]
    Gielen S, Schuler G, Adams V (2010) Cardiovascular effects of exercise training: molecular mechanisms. Circulation. 122(12): p. 1221–38CrossRefPubMedGoogle Scholar
  72. [72]
    Drexler H et al. (1992) Alterations of skeletal muscle in chronic heart failure. Circulation. 85(5): p. 1751–9CrossRefPubMedGoogle Scholar
  73. [73]
    Weisman IM, Zeballos RJ (2001) Clinical exercise testing. Clin Chest Med. 22(4): p. 679–701, viiiCrossRefPubMedGoogle Scholar
  74. [74]
    Garber CE et al. (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc,. 43(7): p. 1334–59PubMedGoogle Scholar
  75. [75]
    Rowell LB (1986) Human circulation regulation during physical stress. London: Oxford University PressGoogle Scholar
  76. [76]
    Scharhag J, Löllgen H, Kindermann W (2013) Herz und Leistungssport: Nutzen oder Schaden? Deutsches Ärzteblatt. 110: p. 1–2Google Scholar
  77. [77]
    Niess AM.e.a. (2002) Freie Radikale und oxidativer Stress bei körperlicher Belastung und Trainingsanpassung – Eine aktuelle Übersicht. Deutsche Zeitschrift für Sportmedizin. 53(12): p. 345–353Google Scholar
  78. [78]
    Vina J et al. (2012) Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 167(1): p. 1–12CrossRefPubMedPubMedCentralGoogle Scholar
  79. [79]
    Bachl, N., Kinzlbauer, M., Tschan, H., Metabolische Größen – Grundlagen, in Ergometrie. Belastungsuntersuchungen in Klinik und Praxis, E. H. Löllgen, E., Gitt, A., Editor. 2009, SpringerGoogle Scholar
  80. [80]
    Völker K (2012) Bewegung im Alltag zur Prävention und Therapie. 53. 6(671–677)Google Scholar
  81. [81]
    Hambrecht R et al. (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 107(25): p. 3152–8CrossRefPubMedGoogle Scholar
  82. [82]
    Wienbergen H, Hambrecht R (2012) Physical exercise training for cardiovascular diseases. Herz. 37(5): p. 486–92CrossRefPubMedGoogle Scholar
  83. [83]
    Saltin B, Gollnick PD (1983) Skeletal Muscle Adaptability: Significance for Metabolism and PerformanceGoogle Scholar
  84. [84]
    Steinacker JM, Wang L, Lormes W, Reißnecker S, Liu Y (2002) Strukturanpassungen des Skelettmuskels auf Training. Deutsche Zeitschrift für Sportmedizin. 53(12): p. 354–360Google Scholar
  85. [85]
    Wolfarth B (2002) Genetische Polymorphismen bei hochtrainierten Ausdauerathleten – die Genathlete-Studie. Deutsche Zeitschrift für Sportmedizin. 53(2): p. 338–344Google Scholar
  86. [86]
    Bloch W, Suhr F, Zimmer P (2012) Molekulare Mechanismen der Herz- und Gefäßanpassung durch Sport. Einfluss von Epigenetik, Mechanotransduktion und freien Radikalen. Herz. 37(5): p. 508–517CrossRefPubMedGoogle Scholar
  87. [87]
    Cheng TO (2009) Hypertrophic cardiomyopathy vs athlete's heart. Int J Cardiol. 131(2): p. 151–5CrossRefPubMedGoogle Scholar
  88. [88]
    La Gerche A et al. (2012) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 33(8): p. 998–1006CrossRefPubMedGoogle Scholar
  89. [89]
    Sheikh N, Sharma S (2014) Impact of ethnicity on cardiac adaptation to exercise. Nat Rev Cardiol. 11(4): p. 198–217CrossRefPubMedGoogle Scholar
  90. [90]
    Sharma S (2003) Athlete's heart – effect of age, sex, ethnicity and sporting discipline. Exp Physiol. 88(5): p. 665–9CrossRefPubMedGoogle Scholar
  91. [91]
    Chandra N et al. (2013) Sudden cardiac death in young athletes: practical challenges and diagnostic dilemmas. J Am Coll Cardiol. 61(10): p. 1027–40CrossRefPubMedGoogle Scholar
  92. [92]
    Rimensberger C et al. (2014) Right ventricular adaptations and arrhythmias in amateur ultra-endurance athletes. Br J Sports Med. 48(15): p. 1179–84CrossRefPubMedGoogle Scholar
  93. [93]
    Zaidi A et al. (2013) Physiological right ventricular adaptation in elite athletes of African and Afro-Caribbean origin. Circulation. 127(17): p. 1783–92CrossRefPubMedGoogle Scholar
  94. [94]
    Utomi, V. et al. (2014) Predominance of normal left ventricular geometry in the male "athlete's heart". Heart. 100(16): p. 1264–71CrossRefPubMedGoogle Scholar
  95. [95]
    Williams PT, Franklin BA (2013) Reduced incidence of cardiac arrhythmias in walkers and runners. PLoS One. 8(6): p. e65302CrossRefPubMedPubMedCentralGoogle Scholar
  96. [96]
    Huonker M et al. (2003) Size and blood flow of central and peripheral arteries in highly trained able-bodied and disabled athletes. J Appl Physiol (1985). 95(2): p. 685–91CrossRefPubMedGoogle Scholar
  97. [97]
    Miyachi, M. et al. () Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation, 2004. 110(18): p. 2858–63CrossRefPubMedGoogle Scholar
  98. [98]
    Steinacker J (2009) Energieliefernde Systeme und Laktat in der Ergometrie, in Ergometrie. Belastungsuntersuchungen in Klink und Praxis, E. H. Löllgen, E., Gitt, A., Editor. Springer: Berlin Heidelberg. p. 213–227Google Scholar
  99. [99]
    Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 8(8): p. 457–65CrossRefPubMedGoogle Scholar
  100. [100]
    Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000 Sep;440(5):653–66.Google Scholar

Copyright information

© Springer-Verlag Wien 2018

Authors and Affiliations

  • Herbert Löllgen
    • 1
    Email author
  • Norbert Bachl
    • 2
  • Christian Lorenz
    • 3
  • Eric Schulze-Bahr
    • 4
  • Ruth Löllgen
    • 5
  • Eszter Csajági
    • 6
  • Fabio Pigozzi
    • 7
  1. 1.DGSP, Past Präsident, Praxis für Kardiologie, SportkardiologieDGSPRemscheidDeutschland
  2. 2.Institut für Sportwissenschaft/Abteilung Sport- und LeistungsphysiologieUniversität WienWienÖsterreich
  3. 3.Institut für Sportwissenschaft/Abteilung Sport- und LeistungsphysiologieUniversität WienWienÖsterreich
  4. 4.Institut für Genetik von Herzerkrankungen (IfGH), Department für Kardiologie und AngiologieUniversitätsklinikum MünsterMünsterDeutschland
  5. 5.Kinderklinik der Universität, Notfallzentrum für Kinder und JugendlicheInselspitalBernSchweiz
  6. 6.Lehrstuhl für Gesundheitswissenschaften und Sportmedizin/ Fakultät für Sport und SportwissenschaftenSemmelweis UniversitätBudapestUngarn
  7. 7.Department of Movement/ Human and Health SciencesUniversity of Rome „Foro Italico“RomItalien

Personalised recommendations