Advertisement

Immunsystem

Chapter
  • 6.9k Downloads

Zusammenfassung

In der Immunologie wird die Abwehr einer Infektion durch den Körper untersucht. Der Mensch ist ständig umgeben von Mikroorganismen, die Krankheiten verursachen können. Das Immunsystem vollführt ein geniales Abwehrprogramm, damit der Mensch trotz ständiger Gefahren nur selten krank wird. Darüber hinaus verfügt unser Körper über die Fähigkeit, sich Infektionskrankheiten, von denen wir einmal betroffen waren, zu merken und eine lang andauernde Immunität dagegen zu entwickeln. Dieses Kapitel beschäftigt sich im ersten Teil mit den Grundlagen des Immunsystems sowie dem akut ablaufenden und erworbenen Immunsystem. Im zweiten Abschnitt werden der Einfluss von akuten und länger andauernden sportlichen Belastungen auf das Immunsystem und einige Studien zu diesem Thema beschrieben. Im letzten Teil dieses Kapitels beschäftigen wir uns mit Inaktivität und dessen Einfluss auf Erkrankungen wie Diabetes, Karzinome, Alter usw. Hier spielt das Immunsystem eine tragende Rolle, weil sowohl durch die Inaktivität selbst sowie auch durch diverse Krankheiten die Immunfunktion verändert bzw. beeinträchtigt ist.

Literatur

  1. [1]
    Walsh NP et al. (2011) Position statement. Part one: Immune function and exercise. Exerc Immunol Rev. 17: p. 6–63PubMedGoogle Scholar
  2. [2]
    Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol. 103(2): p. 693–9CrossRefPubMedGoogle Scholar
  3. [3]
    Nieman DC (2000) Exercise immunology: future directions for research related to athletes, nutrition, and the elderly. Int J Sports Med. 21 Suppl 1: p. S61–8Google Scholar
  4. [4]
    Weineck J (ed.) (2009) Optimales Training: Leistungsphysiologische Trainingslehre unter besonderer Berücksichtigung des Kinder- und Jugendtrainings. Vol. 16. Auflage. 1098Google Scholar
  5. [5]
    Bruunsgaard H et al. (2003) Elevated levels of tumor necrosis factor alpha and mortality in centenarians. Am J Med. 115(4): p. 278–83CrossRefPubMedGoogle Scholar
  6. [6]
    Garcia Lizana F (2012) European innovation partnership on active and healthy aging: moving from policy to action. Gac SanitGoogle Scholar
  7. [7]
    Moreira A et al. (2009) Does exercise increase the risk of upper respiratory tract infections? Br Med Bull. 90: p. 111–31CrossRefPubMedGoogle Scholar
  8. [8]
    Iwata M, Ota KT, Duman RS (2012) The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses. Brain Behav ImmunGoogle Scholar
  9. [9]
    Murphy KM, Travers P, Walport M (2009) Janeway Immunologie. Heidelberg. 1063Google Scholar
  10. [10]
    Schütt CB, Bröker B (2009) Grundwissen Immunologie. 279Google Scholar
  11. [11]
    Gleeson M et al. (2011) Daily probiotic's (Lactobacillus casei Shirota) reduction of infection incidence in athletes. Int J Sport Nutr Exerc Metab. 21(1): p. 55–64CrossRefPubMedGoogle Scholar
  12. [12]
    Strowig T et al. (2012) Inflammasomes in health and disease. Nature. 481(7381): p. 278–86CrossRefPubMedGoogle Scholar
  13. 13.
    Luttmann W, Bratke K, Kupper M, Myrtek D (2009) Der Experimentator Immunologie. Spektrum Akademischer Verlag; 3. Aufl. p. 324Google Scholar
  14. [14]
    Gimenez M et al. (1986) Leukocyte, lymphocyte and platelet response to dynamic exercise. Duration or intensity effect? Eur J Appl Physiol Occup Physiol. 55(5): p. 465–70Google Scholar
  15. [15]
    Nieman DC et al. (1998) Effects of mode and carbohydrate on the granulocyte and monocyte response to intensive, prolonged exercise. J Appl Physiol. 84(4): p. 1252–9PubMedGoogle Scholar
  16. [16]
    Weineck J (ed.) (2010) Sportbiologie. Vol. 10. überarbeitete Auflage. Balingen: Spitta. 1141Google Scholar
  17. [17]
    Gabriel HH, Kindermann W (1998) Adhesion molecules during immune response to exercise. Can J Physiol Pharmacol. 76(5): p. 512–23CrossRefPubMedGoogle Scholar
  18. [18]
    Gabriel HH, Urhausen A, Kindermann W (1991) Circulating leucocyte and lymphocyte subpopulations before and after intensive endurance exercise to exhaustion. Eur J Appl Physiol Occup Physiol. 63(6): p. 449–57CrossRefPubMedGoogle Scholar
  19. [19]
    Blannin AK et al. (1996) Effects of submaximal cycling and long-term endurance training on neutrophil phagocytic activity in middle aged men. Br J Sports Med. 30(2): p. 125–9CrossRefPubMedPubMedCentralGoogle Scholar
  20. [20]
    Li TL, Cheng PY (2007) Alterations of immunoendocrine responses during the recovery period after acute prolonged cycling. Eur J Appl Physiol. 101(5): p. 539–46CrossRefPubMedGoogle Scholar
  21. [21]
    Chinda D et al. (2003) A competitive marathon race decreases neutrophil functions in athletes. Luminescence. 18(6): p. 324–9CrossRefPubMedGoogle Scholar
  22. [22]
    Lancaster GI et al. (2005) The physiological regulation of toll-like receptor expression and function in humans. J Physiol. 563 (Pt 3): p. 945–55CrossRefPubMedPubMedCentralGoogle Scholar
  23. [23]
    Nieman DC et al. (1994) Effect of high- versus moderate-intensity exercise on lymphocyte subpopulations and proliferative response. Int J Sports Med. 15(4): p. 199–206CrossRefPubMedGoogle Scholar
  24. [24]
    Haahr PM et al. (1991) Effect of physical exercise on in vitro production of interleukin 1, interleukin 6, tumour necrosis factor-alpha, interleukin 2 and interferon-gamma. Int J Sports Med. 12(2): p. 223–7CrossRefPubMedGoogle Scholar
  25. [25]
    Nehlsen-Cannarella SL et al. (1991) The effects of acute moderate exercise on lymphocyte function and serum immunoglobulin levels. Int J Sports Med. 12(4): p. 391–8CrossRefPubMedGoogle Scholar
  26. [26]
    Pyne D.B et al. (2001) Mucosal immunity, respiratory illness, and competitive performance in elite swimmers. Med Sci Sports Exerc. 33(3): p. 348–53CrossRefPubMedGoogle Scholar
  27. [27]
    West NP et al. (2010) The effect of exercise on innate mucosal immunity. Br J Sports Med. 44(4): p. 227–31CrossRefPubMedGoogle Scholar
  28. [28]
    Pedersen BK (2011) Muscles and their myokines. J Exp Biol, 2011. 214(Pt 2): p. 337–46CrossRefPubMedGoogle Scholar
  29. [29]
    Pillon NJ et al. (2013) Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am J Physiol Endocrinol Metab. 304(5): p. E453–65CrossRefGoogle Scholar
  30. [30]
    Northoff H, Berg A (1991) Immunologic mediators as parameters of the reaction to strenuous exercise. Int J Sports Med. 12 Suppl 1: p. S9–15CrossRefGoogle Scholar
  31. [31]
    Ostrowski K et al. (2001) Chemokines are elevated in plasma after strenuous exercise in humans. Eur J Appl Physiol. 84(3): p. 244–5CrossRefPubMedGoogle Scholar
  32. [32]
    Ostapiuk-Karolczuk J et al. (2012) Cytokines and cellular inflammatory sequence in non-athletes after prolonged exercise. J Sports Med Phys Fitness. 52(5): p. 563–8PubMedGoogle Scholar
  33. [33]
    Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 88(4): p. 1379–406CrossRefPubMedGoogle Scholar
  34. [34]
    Noble EG, Shen GX (2012) Impact of exercise and metabolic disorders on heat shock proteins and vascular inflammation. Autoimmune Dis. 2012: p. 836519PubMedPubMedCentralGoogle Scholar
  35. [35]
    Carins J, Booth C (2002) Salivary immunoglobulin-A as a marker of stress during strenuous physical training. Aviat Space Environ Med. 73(12): p. 1203–7PubMedGoogle Scholar
  36. [36]
    Lancaster GI et al. (2004) Effects of acute exhaustive exercise and chronic exercise training on type 1 and type 2 T lymphocytes. Exerc Immunol Rev. 10: p. 91–106PubMedGoogle Scholar
  37. [37]
    Gleeson M et al. (1995) The effect on immunity of long-term intensive training in elite swimmers. Clin Exp Immunol. 102(1): p. 210–6CrossRefPubMedPubMedCentralGoogle Scholar
  38. [38]
    Budgett R et al. (2000) Redefining the overtraining syndrome as the unexplained underperformance syndrome. Br J Sports Med. 34(1): p. 67–8CrossRefPubMedPubMedCentralGoogle Scholar
  39. [39]
    Cox AJ et al. (2008) Clinical and laboratory evaluation of upper respiratory symptoms in elite athletes. Clin J Sport Med. 18(5): p. 438–45CrossRefPubMedGoogle Scholar
  40. [40]
    Matthews CE et al. (2002) Moderate to vigorous physical activity and risk of upper-respiratory tract infection. Med Sci Sports Exerc. 34(8): p. 1242–8CrossRefPubMedGoogle Scholar
  41. [41]
    Nieman DC et al. (2006) Relationship between salivary IgA secretion and upper respiratory tract infection following a 160-km race. J Sports Med Phys Fitness. 46(1): p. 158–62PubMedGoogle Scholar
  42. [42]
    Newsholme EA (1994) Biochemical mechanisms to explain immunosuppression in well-trained and overtrained athletes. Int J Sports Med. 15 Suppl 3: p. S142–7CrossRefGoogle Scholar
  43. [43]
    Lakier Smith L (2003) Overtraining, excessive exercise, and altered immunity: is this a T helper-1 versus T helper-2 lymphocyte response? Sports Med. 33(5): p. 347–64CrossRefPubMedGoogle Scholar
  44. [44]
    Steinacker JM et al. (2005) Thyroid hormones, cytokines, physical training and metabolic control. Horm Metab Res. 37(9): p. 538–4CrossRefPubMedGoogle Scholar
  45. [45]
    Bronnum-Hansen H et al. (2007) Impact of selected risk factors on expected lifetime without long-standing, limiting illness in Denmark. Prev Med. 45(1): p. 49–53CrossRefPubMedGoogle Scholar
  46. [46]
    Pedersen BK (2009) The diseasome of physical inactivity – and the role of myokines in muscle-fat cross talk. J Physiol. 587(Pt 23): p. 5559–68CrossRefPubMedPubMedCentralGoogle Scholar
  47. [47]
    Olsen RH et al. (2008) Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA. 299(11): p. 1261–3CrossRefPubMedGoogle Scholar
  48. [48]
    Krogh-Madsen R et al. (2010) A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. J Appl Physiol. 108(5): p. 1034–40CrossRefPubMedGoogle Scholar
  49. [49]
    Starkie R et al. (2003) Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 17(8): p. 884–6PubMedGoogle Scholar
  50. [50]
    Ertek S, Cicero A (2012) Impact of physical activity on inflammation: effects on cardiovascular disease risk and other inflammatory conditions. Arch Med Sci. 8(5): p. 794–804CrossRefPubMedPubMedCentralGoogle Scholar
  51. [51]
    Quinn LS et al. (2009) Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am J Physiol Endocrinol Metab. 296(1): p. E191–202CrossRefGoogle Scholar
  52. [52]
    Alibegovic AC et al. (2010) Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am J Physiol Endocrinol Metab. 299(5): p. E752–63CrossRefGoogle Scholar
  53. [53]
    Alvarez-Guardia D et al. (2011) PPARbeta/delta activation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochim Biophys Acta. 1811(2): p. 59–67CrossRefPubMedGoogle Scholar
  54. [54]
    Balagopal PB et al. (2010) Changes in circulating satiety hormones in obese children: a randomized controlled physical activity-based intervention study. Obesity (Silver Spring). 18(9): p. 1747–53CrossRefGoogle Scholar
  55. [55]
    Menshikova EV et al. (2005) Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab. 288(4): p. E818–25CrossRefPubMedGoogle Scholar
  56. [56]
    Engeli S et al. (2012) Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest. 122(12): p. 4675–9CrossRefPubMedPubMedCentralGoogle Scholar
  57. [57]
    He C et al. (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 481(7382): p. 511–5CrossRefPubMedPubMedCentralGoogle Scholar
  58. [58]
    Rambold AS, Lippincott-Schwartz J (2011) Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle. 10(23): p. 4032–8CrossRefPubMedPubMedCentralGoogle Scholar
  59. [59]
    Golbidi S, Mesdaghinia A, Laher I (2012) Exercise in the metabolic syndrome. Oxid Med Cell Longev. p. 349710Google Scholar
  60. [60]
    Pugliese G et al. (2009) Self glucose monitoring and physical exercise in diabetes. Diabetes Metab Res Rev. 25 Suppl 1: p. S11–7CrossRefGoogle Scholar
  61. [61]
    Stehno-Bittel L (2008) Intricacies of fat. Phys Ther. 88(11): p. 1265–78CrossRefPubMedGoogle Scholar
  62. [62]
    Wolin KY et al. (2012) Implementing the exercise guidelines for cancer survivors. J Support Oncol. 10(5): p. 171–7CrossRefPubMedPubMedCentralGoogle Scholar
  63. [63]
    Zopf EM, Baumann FT, Pfeifer K (2013) Physical Activity and Exercise Recommendations for Cancer Patients during Rehabilitation. Rehabilitation (Stuttg)Google Scholar
  64. [64]
    Halle M, Schoenberg MH (2009) Physical activity in the prevention and treatment of colorectal carcinoma. Dtsch Arztebl Int. 106(44): p. 722–7PubMedPubMedCentralGoogle Scholar
  65. [65]
    Moy ML et al. (2013) Daily Step Count is Associated with Plasma CRP and IL-6 in a US Cohort with COPD. ChestGoogle Scholar
  66. [66]
    Poulsen JB (2012) Impaired physical function, loss of muscle mass and assessment of biomechanical properties in critical ill patients. Dan Med J. 59(11): p. B4544PubMedGoogle Scholar
  67. [67]
    Schultz G (1893) Experimentelle Untersuchungen über das Vorkommen und die diagnostische Bedeutung der Leukocytose (experimental research on the antecedents and diagnostic importance of leukocytosis). Dtsche Arch Klin Med. 51: p. 234–81Google Scholar

Copyright information

© Springer-Verlag Wien 2018

Authors and Affiliations

  1. 1.Sankt Andrä-WördernÖsterreich
  2. 2.Forschungsplattform Active AgeingUniversität WienWienÖsterreich
  3. 3.Institut für Sportwissenschaft /Abteilung Sport- und LeistungsphysiologieUniversität WienWienÖsterreich

Personalised recommendations