Skip to main content

Use of Novel Biomaterial Design and Stem Cell Therapy in Cutaneous Wound Healing

  • Chapter
  • First Online:
Book cover Dermal Replacements in General, Burn, and Plastic Surgery

Abstract

The spontaneous regenerative capacity of skin is dependent on the depth and area of cutaneous damage. This is the case as it dictates the extent of destruction of reparative basal and stem cell populations. Minor epidermal injury, where basement membrane and basal keratinocyte populations remain intact, results in rapid and complete cutaneous regeneration. However, partial-thickness (papillary dermal damage) and particularly full-thickness (papillary and reticular dermal damage) defects often heal through debilitating scar formation and contraction. Indeed, without surgical intervention the damage to physiological homeostasis resulting from large full-thickness wounds can be so acute that death may result. The rapid closure of such wounds is essential to restore the barrier functions of the skin and reduce scar formation (Cubison et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann B et al (2009) Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant 18(3):371–380

    Article  PubMed  Google Scholar 

  • Andrews PW et al (1984) Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest 50(2):147

    PubMed  CAS  Google Scholar 

  • Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218(2):237–245

    Article  PubMed  CAS  Google Scholar 

  • Askari AT et al (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362(9385):697–703

    Article  PubMed  CAS  Google Scholar 

  • Ayres CE et al (2010) Nanotechnology in the design of soft tissue scaffolds: innovations in structure and function. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(1):20–34

    Article  PubMed  CAS  Google Scholar 

  • Badiavas EV, Falanga V (2003) Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 139(4):510

    Article  PubMed  Google Scholar 

  • Badiavas EV et al (2003) Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 196(2):245–250

    Article  PubMed  CAS  Google Scholar 

  • Beddington R, Robertson E (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105(4):733–737

    PubMed  CAS  Google Scholar 

  • Bunnell BA et al (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45(2):115–120

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MK et al (2004) Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev Dyn 229(2):243–258

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MK, Frey-Vasconcells J, Rao MS (2009) Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 27(7):606–613

    Article  PubMed  CAS  Google Scholar 

  • Chen L et al (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886

    Article  PubMed  CAS  Google Scholar 

  • Chen FM et al (2011) Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives. Biomaterials 32:3189–3209

    Article  PubMed  CAS  Google Scholar 

  • Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  PubMed  CAS  Google Scholar 

  • Cubison T, Pape SA, Parkhouse N (2006) Evidence for the link between healing time and the development of hypertrophic scars (HTS) in paediatric burns due to scald injury. Burns 32(8):992–999

    Article  PubMed  Google Scholar 

  • Deans RJ, Moseley AB (2000) Mesenchymal stem cells biology and potential clinical uses. Exp Hematol 28(8):875–884

    Article  PubMed  CAS  Google Scholar 

  • Dennis JE et al (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170:73–82

    Article  PubMed  Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673

    Article  PubMed  CAS  Google Scholar 

  • Falanga V et al (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13(6):1299–1312

    Article  PubMed  CAS  Google Scholar 

  • Fu X et al (2006) Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair Regen 14(3):325–335

    Article  PubMed  Google Scholar 

  • Fu YC et al (2008) Optimized bone regeneration based on sustained release from three-­dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol Bioeng 99(4):996–1006

    Article  PubMed  CAS  Google Scholar 

  • Gamelli RL, Paxton TP, O’Reilly M (1993) Bone marrow toxicity by silver sulfadiazine. Surg Gynecol Obstet 177(2):115

    PubMed  CAS  Google Scholar 

  • Gamelli RL, He LK, Liu H (1995) Recombinant human granulocyte colony-stimulating factor treatment improves macrophage suppression of granulocyte and macrophage growth after burn and burn wound infection. J Trauma 39(6):1141

    Article  PubMed  CAS  Google Scholar 

  • Goodell MA (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Groeber F et al (2011) Skin tissue engineering-in vivo and in vitro applications. Adv Drug Deliv Rev 63(4–5):352–366

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S et al (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189(1):54–63

    Article  PubMed  CAS  Google Scholar 

  • Guilak F et al (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206(1):229–237

    Article  PubMed  CAS  Google Scholar 

  • Guo J et al (2009) Ischaemia/reperfusion induced cardiac stem cell homing to the injured myocardium by stimulating stem cell factor expression via NF-κB pathway. Int J Exp Pathol 90(3):355–364

    Article  PubMed  CAS  Google Scholar 

  • Gurtner GC et al (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  PubMed  CAS  Google Scholar 

  • Haider HK et al (2008) IGF-1–overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair. Circ Res 103(11):1300–1308

    Article  PubMed  CAS  Google Scholar 

  • He W, Horn SW, Hussain MD (2007) Improved bioavailability of orally administered mifepristone from PLGA nanoparticles. Int J Pharm 334(1–2):173–178

    Article  PubMed  CAS  Google Scholar 

  • Hodgkinson T, Yuan XF, Bayat A (2009) Adult stem cells in tissue engineering. Expert Rev Med Devices 6(6):621–640

    Article  PubMed  Google Scholar 

  • Hoffman LM, Carpenter MK (2005) Characterization and culture of human embryonic stem cells. Nat Biotechnol 23(6):699–708

    Article  PubMed  CAS  Google Scholar 

  • Hohensinner P et al (2009) The inflammatory mediator oncostatin M induces stromal derived factor-1 in human adult cardiac cells. FASEB J 23(3):774

    Article  PubMed  CAS  Google Scholar 

  • Hohenstein B et al (2010) Enhanced progenitor cell recruitment and endothelial repair after selective endothelial injury of the mouse kidney. Am J Physiol Renal Physiol 298(6):F1504–F1514

    Article  PubMed  CAS  Google Scholar 

  • Hoogduijn MJ, Gorjup E, Genever PG (2006) Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Stem Cells Dev 15(1):49–60

    Article  PubMed  CAS  Google Scholar 

  • Ichioka S et al (2005) Bone marrow-impregnated collagen matrix for wound healing: experimental evaluation in a microcirculatory model of angiogenesis, and clinical experience. Br J Plast Surg 58(8):1124–1130

    Article  PubMed  Google Scholar 

  • Ito M et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354

    Article  PubMed  CAS  Google Scholar 

  • Jahoda CAB, Reynolds AJ (2001) Hair follicle dermal sheath cells: unsung participants in wound healing. Lancet 358(9291):1445–1448

    Article  PubMed  CAS  Google Scholar 

  • Javazon EH et al (2007) Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen 15(3):350–359

    Article  PubMed  Google Scholar 

  • Jiang H et al (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108(2–3):237–243

    Article  PubMed  CAS  Google Scholar 

  • Katz AJ et al (1999) Emerging approaches to the tissue engineering of fat. Clin Plast Surg 26(4):587

    PubMed  CAS  Google Scholar 

  • Kaufman DS et al (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci 98(19):10716

    Article  PubMed  CAS  Google Scholar 

  • Kawashima I et al (1996) CD34+ human marrow cells that express low levels of Kit protein are enriched for long-term marrow-engrafting cells. Blood 87(10):4136

    PubMed  CAS  Google Scholar 

  • Kemp P (2006) History of regenerative medicine: looking backwards to move forwards. Regen Med 1(5):653–669

    Article  PubMed  Google Scholar 

  • Kim GM, Van Den Boogaart MAF, Brugger J (2003) Fabrication and application of a full wafer size micro/nanostencil for multiple length-scale surface patterning. Microelectron Eng 67:609–614

    Article  CAS  Google Scholar 

  • Kim WS et al (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48(1):15–24

    Article  PubMed  CAS  Google Scholar 

  • Kim D et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:236–257

    Article  PubMed  CAS  Google Scholar 

  • Kita K et al (2010) Isolation and characterization of mesenchymal stem cells from the sub-­amniotic human umbilical cord lining membrane. Stem Cells Dev 19(4):491–502

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JE et al (2008) Immunophenotyping of the human bulge region: the quest to define useful in situ markers for human epithelial hair follicle stem cells and their niche. Exp Dermatol 17(7):592

    Article  PubMed  Google Scholar 

  • Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27(5):1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Kocher A et al (2006) Myocardial homing and neovascularization by human bone marrow angioblasts is regulated by IL-8/Gro CXC Chemokines. J Mol Cell Cardiol 40(4):455–464

    Article  PubMed  CAS  Google Scholar 

  • Kolokol’chikova E et al (2001) Morphological changes in burn wounds after transplantation of allogenic fibroblasts. Bull Exp Biol Med 131(1):89–93

    Article  PubMed  Google Scholar 

  • Kränkel N et al (2011) Targeting stem cell niches and trafficking for cardiovascular therapy. Pharmacol Ther 129(1):62–81

    Article  PubMed  CAS  Google Scholar 

  • Kuang D et al (2008) Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res Cardiol 103(3):265–273

    Article  PubMed  CAS  Google Scholar 

  • Lajtha L (1979) Stem cell concepts. Differentiation 14(1–3):23–33

    Article  PubMed  CAS  Google Scholar 

  • Lapidot T (2001) Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. Ann N Y Acad Sci 938(1):83–95

    Article  PubMed  CAS  Google Scholar 

  • Larochelle A et al (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 2(12):1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Li WJ et al (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res A 60(4):613–621

    Article  CAS  Google Scholar 

  • Liu H et al (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3(6):587–590

    Article  PubMed  CAS  Google Scholar 

  • Lutolf MP, Blau HM (2009) Artificial stem cell niches. Adv Mater 21(32–33):3255–3268

    Article  PubMed  CAS  Google Scholar 

  • MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445(7130):874–880

    Article  PubMed  CAS  Google Scholar 

  • Maherali N et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70

    Article  PubMed  CAS  Google Scholar 

  • McFarlin K et al (2006) Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen 14(4):471–478

    Article  PubMed  Google Scholar 

  • Michallet M et al (2000) Transplantation with selected autologous peripheral blood CD34+ Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma impact of HSC dose on engraftment, safety, and immune reconstitution. Exp Hematol 28(7):858–870

    Article  PubMed  CAS  Google Scholar 

  • Mironov V, Reis N, Derby B (2006) Review: bioprinting: a beginning. Tissue Eng 12(4):631–634

    Article  PubMed  Google Scholar 

  • Mironov V et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    Article  PubMed  CAS  Google Scholar 

  • Müller LUW, Daley GQ, Williams DA (2009) Upping the ante: recent advances in direct reprogramming. Mol Ther 17(6):947–953

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa M et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11(11–12):1658–1666

    Article  PubMed  CAS  Google Scholar 

  • Navsaria HA et al (2004) The role of allogenic fibroblasts in an acute wound healing model. Plast Reconstr Surg 113(6):1719

    Article  PubMed  Google Scholar 

  • O’Blenes SB et al (2010) Engraftment is optimal when myoblasts are transplanted early: the role of hepatocyte growth factor. Ann Thorac Surg 89(3):829

    Article  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  PubMed  CAS  Google Scholar 

  • Osawa M et al (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273(5272):242

    Article  PubMed  CAS  Google Scholar 

  • Park IH et al (2007) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    Article  PubMed  CAS  Google Scholar 

  • Phillippi JA et al (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26(1):127–134

    Article  PubMed  CAS  Google Scholar 

  • Piner RD et al (1999) “ Dip-pen” nanolithography. Science 283(5402):661

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci U S A 100(Suppl 1):11917

    Article  PubMed  CAS  Google Scholar 

  • Ramirez F, Rifkin DB (2003) Cell signaling events: a view from the matrix. Matrix Biol 22(2):101–107

    Article  PubMed  CAS  Google Scholar 

  • Roth EA et al (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25(17):3707–3715

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M et al (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581

    PubMed  CAS  Google Scholar 

  • Schenk S et al (2007) Monocyte chemotactic protein‐3 is a myocardial mesenchymal stem cell homing factor. Stem Cells 25(1):245–251

    Article  PubMed  CAS  Google Scholar 

  • Schlüter H, Kaur P (2009) Bioengineered human skin from embryonic stem cells. Lancet 374(9703):1725–1726

    Article  PubMed  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7

    PubMed  CAS  Google Scholar 

  • Sordi V (2009) Mesenchymal stem cell homing capacity. Transplantation 87(9S):S42

    Article  PubMed  Google Scholar 

  • Spees JL et al (2003) Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci 100(5):2397

    Article  PubMed  CAS  Google Scholar 

  • Stoff A et al (2009) Promotion of incisional wound repair by human mesenchymal stem cell transplantation. Exp Dermatol 18(4):362–369

    Article  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  • Tang YL et al (2005) Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid-mediated stromal-cell-derived factor-1 [alpha] treatment. Regul Pept 125(1–3):1–8

    Article  PubMed  CAS  Google Scholar 

  • Théry M et al (2007) Experimental and theoretical study of mitotic spindle orientation. Nature 447(7143):493–496

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145

    Article  PubMed  CAS  Google Scholar 

  • Tiede S et al (2007) Hair follicle stem cells: walking the maze. Eur J Cell Biol 86(7):355–376

    Article  PubMed  CAS  Google Scholar 

  • Togel F, Westenfelder C (2007) Adult bone marrow-derived stem cells for organ regeneration and repair. Dev Dyn 236(12):3321–3331

    Article  PubMed  CAS  Google Scholar 

  • Uchida N et al (2001) Transplantable hematopoietic stem cells in human fetal liver have a CD34+ side population (SP) phenotype. J Clin Invest 108(7):1071–1077

    CAS  PubMed  Google Scholar 

  • Unzek S et al (2007) SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo. Cell Transplant 16(9):879–886

    Article  PubMed  Google Scholar 

  • Utsunomiya T et al (2011) Human adipose-derived stem cells: potential clinical applications in surgery. Surg Today 41(1):18–23

    Article  PubMed  Google Scholar 

  • Wagner JE, Gluckman E (2010) Umbilical cord blood transplantation: the first 20 years. Semin Hematol 47(1):3–12

    Article  PubMed  Google Scholar 

  • Wang Y et al (2007) Stem cell transplantation: a promising therapy for Parkinson’s disease. J Neuroimmune Pharmacol 2(3):243–250

    Article  PubMed  CAS  Google Scholar 

  • Watt FM (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427

    Article  PubMed  CAS  Google Scholar 

  • Wernig M et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324

    Article  PubMed  CAS  Google Scholar 

  • Witkowska-Zimny M, Walenko K (2011) Stem cells from adipose tissue. Cell Mol Biol Lett 16:236–257

    Article  CAS  Google Scholar 

  • Wu Y et al (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Shah JD, Wang H (2009) Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Eng Part A 15(4):945

    Article  PubMed  CAS  Google Scholar 

  • Yao S et al (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Natl Acad Sci U S A 103:6907–6912

    Article  CAS  Google Scholar 

  • Yoshikawa T et al (2008) Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 121(3):860

    Article  PubMed  CAS  Google Scholar 

  • Zhou H et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:236–257

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardeshir Bayat BSc (Hons), MBBS, MRCS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Hodgkinson, T., Bayat, A. (2013). Use of Novel Biomaterial Design and Stem Cell Therapy in Cutaneous Wound Healing. In: Kamolz, LP., Lumenta, D. (eds) Dermal Replacements in General, Burn, and Plastic Surgery. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1586-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1586-2_3

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1585-5

  • Online ISBN: 978-3-7091-1586-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics