Cloud Application Management Patterns

  • Christoph Fehling
  • Frank Leymann
  • Ralph Retter
  • Walter Schupeck
  • Peter Arbitter


This chapter covers architectural patterns that describe how cloud applications as described in Chap.  4, can be managed automatically by separate components (Fig. 5.1). These management components (Sect. 5.2) handle the automated management of cloud-native applications regarding dynamic elasticity, resiliency, updates etc. Due to the pay-per-use property of cloud applications covered in Sect.  1.1, scaling tasks should be automated, because the number of provisioned IT resources, i.e., the number of provisioned virtual servers, the size of booked storage or the number of application component instances directly affects the runtime costs of an application. Furthermore, environment-based availability (88) assurances, where individual cloud resources can fail at any time, or a node-based availability (85) that does not meet requirements of an application, as well as network partitions, may create the need to monitor applications and automatically react to resource failures.


Cloud Provider Cloud Resource Management Component Cloud Application Application Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley. (2003)
  2. 2.
    Gamma, E., Helm, R., Johnson, R.: Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading (1994)Google Scholar
  3. 4.
    Hanmer, R.: Patterns for Fault Tolerant Software. Wiley, Chichester (2007)Google Scholar
  4. 7.
    Riempp, G., Gieffers-Ankel, S.: Application portfolio management: a decision-oriented view of enterprise architecture. Inf. Syst. E-Bus. Manag. 5, 359–378 (2007)CrossRefGoogle Scholar
  5. 8.
    IBM: Corporate strategy analysis of IDC data (2007)Google Scholar
  6. 14.
    Rohnert, H., Sommerlad, P., Stal, M., Buschmann, F., Meunier, R.: Pattern-Oriented Software Architecture. Wiley, Chichester (1996)Google Scholar
  7. 18. Elastic Compute Cloud (EC2).
  8. 23.
    Allspaw, J.: The Art of Capacity Planning: Scaling Web Resources. O’Reilly, Sebastopol (2008)Google Scholar
  9. 25.
    Fehling, C., Leymann, F., Rütschlin, J., Schumm, D.: Pattern-based development and management of cloud applications. Future Internet 4, 110–141 (2012). doi: 10.3390/fi4010110 CrossRefGoogle Scholar
  10. 38. Amazon Simple Queue Service (Amzon SQS).
  11. 52.
    Microsoft.: Windows Azure.
  12. 53. Elastic Beanstalk.
  13. 60.
    Apache Foundation: Deltacloud.
  14. 61.
    Apache Foundation: Apache libcloud.
  15. 62.
  16. 72.
    Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans. Internet Tech. 2(2), 115–150 (2002)Google Scholar
  17. 76.
    Leymann, F., Roller, D.: Production Work Flow: Concepts and Techniques. Prentice Hall (1999)Google Scholar
  18. 93.
    Varia, J.: Cloud architectures. Technical report, Amazon Web Services, June 2008Google Scholar
  19. 127.
    Tanenbaum, A.S., van Steen, M.: Distributed Systems Principles and Paradigms, 2nd edn. Prentice Hall (2006)Google Scholar
  20. 145.
    Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Message Service. Sun Microsystems, 901 San Antonio Road Palo Alto, CA 94303 U.S.A., 1.1 edition. (2002). Accessed Apr 2002
  21. 146.
    Chappell, D.A., Monson-Haefel, R.: Java Message Service. O’Reilly, (2000)Google Scholar
  22. 154.
    Varia J.: Architecting for the cloud: best practices. Technical report, Amazon Web Services, May 2010Google Scholar
  23. 159.
    Business process model and notation (BPMN) version 2.0. (2011)
  24. 161.
    Fielding, R.T.: Architectural styles and the design of network-based software architectures. Ph.D. thesis, University of California (2000)Google Scholar
  25. 186.
    Topology and orchestration specification for cloud applications version 1.0. (2012). Accessed Aug 2012.
  26. 187.
    DMTF Cloud Management Working Group: Cloud Infrastructure Management Interface (CIMI) Model and RESTful HTTP-based Protocol. (2012). Accessed Oct 2012
  27. 188.
    IEEE: Cloud profiles working group (CPWG).
  28. 189.
    IEEE: Intercloud working group (ICWG).
  29. 190.
  30. 191.
    Puppet Labs: It automation software for system administrators.
  31. 192.
  32. 193.
    Scalr: Features.
  33. 194. Auto Scaling.
  34. 195.
    Microsoft: The autoscaling application block. (2012)
  35. 196.
    Menasce, D.A., Almeida, V.A.F.: Capacity Planning for Web Services: Metrics, Models, and Methods. Prentice Hall, Upper Saddle River (2001)Google Scholar
  36. 197.
    Microsoft: Overview of Windows Azure traffic manager.
  37. 198. Amazon CloudWatch.
  38. 199.
    Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems. Addison-Wesley, Boston (2002)Google Scholar
  39. 200.
    Murch, R.: Autonomic Computing. IBM Press (2004)Google Scholar
  40. 201.
    Hill, Z., Li, J., Mao, M., Ruiz-Alvarez, A., Humphrey, M.: Early observations on the performance of windows azure. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing (2010)Google Scholar
  41. 202.
    ParaleapTechnologies: Elasticity-as-a-service for Windows Azure.
  42. 203.
    Hull, S.: 5 things toxic to scalability. (2011). Accessed Sept 2011
  43. 204.
    Hoff, T.: Strategy: guaranteed availability requires reserving instances in specific zones. (2011). Accessed Dec 2011
  44. 205.
    Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation. Addison-Wesley, Upper Saddle River (2010)Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Christoph Fehling
    • 1
  • Frank Leymann
    • 1
  • Ralph Retter
    • 2
  • Walter Schupeck
    • 3
  • Peter Arbitter
    • 4
  1. 1.University of StuttgartStuttgartGermany
  2. 2.T-Systems International GmbHFrankfurtGermany
  3. 3.Daimler AGStuttgartGermany
  4. 4.Microsoft Deutschland GmbHUnterschleißheimGermany

Personalised recommendations