Skip to main content

From Genome to Proteome: Transcriptional and Proteomic Analysis of Cryptosporidium Parasites

  • Chapter
  • First Online:
  • 2122 Accesses

Abstract

The ability to generate large-scale transcriptome and proteome datasets has changed the landscape in parasite biology. These data enable an integrated, whole organism approach to understanding how parasites function and interact with their hosts. The difficulty in propagating Cryptosporidium means that work has focused on the oocyst and sporozoite stages of the parasite. Transcriptional studies using expressed sequence tags (ESTs), microarrays and quantitative real-time PCR (qRT-PCR) have given a valuable insight into how both the parasite and host cells respond to infection. In addition, global proteomics analyses have characterised the expressed proteomes of oocysts and sporozoites of C. parvum. Currently, Cryptosporidium research is lagging behind some other pathogens in terms of global ‘omics’ analyses. However, there have been significant technological and bioinformatics advances in transcriptome and proteome analyses in recent years, which are set to continue. Exploiting these technologies and capitalising on the resulting “systems-biology” data mean that exciting times are ahead in the field of Cryptosporidium biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahamsen MS, Templeton TJ, Enomoto S et al (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

    Article  PubMed  CAS  Google Scholar 

  • Arrowood MJ (2002) In vitro cultivation of cryptosporidium species. Clin Microbiol Rev 15:390–400

    Article  PubMed  Google Scholar 

  • Aurrecoechea C, Heiges M, Wang H et al (2007) ApiDB: integrated resources for the apicomplexan bioinformatics resource center. Nucleic Acids Res 35:D427–D430

    Article  PubMed  CAS  Google Scholar 

  • Bradley PJ, Ward C, Cheng SJ et al (2005) Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 280:34245–34258

    Article  PubMed  CAS  Google Scholar 

  • Bromley E, Leeds N, Clark J et al (2003) Defining the protein repertoire of microneme secretory organelles in the apicomplexan parasite Eimeria tenella. Proteomics 3:1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Castellanos-Gonzalez A, Yancey LS, Wang HC et al (2008) Cryptosporidium infection of human intestinal epithelial cells increases expression of osteoprotegerin: a novel mechanism for evasion of host defenses. J Infect Dis 197:916–923

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee A, Banerjee S, Steffen M et al (2010) Evidence for mucin-like glycoproteins that tether sporozoites of Cryptosporidium parvum to the inner surface of the oocyst wall. Eukaryot Cell 9:84–96

    Article  PubMed  CAS  Google Scholar 

  • Chen XM, Levine SA, Splinter PL et al (2001) Cryptosporidium parvum activates nuclear factor kappaB in biliary epithelia preventing epithelial cell apoptosis. Gastroenterology 120:1774–1783

    Article  PubMed  CAS  Google Scholar 

  • Chen YA, McKillen DJ, Wu S et al (2004) Optimal cDNA microarray design using expressed sequence tags for organisms with limited genomic information. BMC Bioinformatics 5:191

    Article  PubMed  Google Scholar 

  • Current WL, Haynes TB (1984) Complete development of Cryptosporidium in cell culture. Science 224:603–605

    Article  PubMed  CAS  Google Scholar 

  • Deng M, Lancto CA, Abrahamsen MS (2004) Cryptosporidium parvum regulation of human epithelial cell gene expression. Int J Parasitol 34:73–82

    Article  PubMed  CAS  Google Scholar 

  • Elliott DA, Clark DP (2000) Cryptosporidium parvum induces host cell actin accumulation at the host-parasite interface. Infect Immun 68:2315–2322

    Article  PubMed  CAS  Google Scholar 

  • Elliott DA, Coleman DJ, Lane MA et al (2001) Cryptosporidium parvum infection requires host cell actin polymerization. Infect Immun 69:5940–5942

    Article  PubMed  CAS  Google Scholar 

  • Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  PubMed  CAS  Google Scholar 

  • Glassmeyer ST, Ware MW, Schaefer FW 3rd et al (2007) An improved method for the analysis of Cryptosporidium parvum oocysts by matrix-assisted laser desorption/ionization time of flight mass spectrometry. J Eukaryot Microbiol 54:479–481

    PubMed  CAS  Google Scholar 

  • Gobert GN, Moertel LP, McManus DP (2005) Microarrays: new tools to unravel parasite transcriptomes. Parasitology 131:439–448

    Article  PubMed  CAS  Google Scholar 

  • Griffiths JK, Moore R, Dooley S et al (1994) Cryptosporidium parvum infection of Caco-2 cell monolayers induces an apical monolayer defect, selectively increases transmonolayer permeability, and causes epithelial cell death. Infect Immun 62:4506–4514

    PubMed  CAS  Google Scholar 

  • Heiges M, Wang H, Robinson E et al (2006) CryptoDB: a Cryptosporidium bioinformatics resource update. Nucleic Acids Res 34:D419–D422

    Article  PubMed  CAS  Google Scholar 

  • Hijjawi NS, Meloni BP, Morgan UM et al (2001) Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture. Int J Parasitol 31:1048–1055

    Article  PubMed  CAS  Google Scholar 

  • Hijjawi NS, Meloni BP, Ryan UM et al (2002) Successful in vitro cultivation of Cryptosporidium andersoni: evidence for the existence of novel extracellular stages in the life cycle and implications for the classification of Cryptosporidium. Int J Parasitol 32:1719–1726

    Article  PubMed  CAS  Google Scholar 

  • Holt RA, Jones SJ (2008) The new paradigm of flow cell sequencing. Genome Res 18:839–846

    Article  PubMed  CAS  Google Scholar 

  • Jenkins MC, O’Brien C, Miska K et al (2011) Gene expression during excystation of Cryptosporidium parvum oocysts. Parasitol Res 109:509–513

    Article  PubMed  Google Scholar 

  • Liu J, Deng M, Lancto CA et al (2009) Biphasic modulation of apoptotic pathways in Cryptosporidium parvum-infected human intestinal epithelial cells. Infect Immun 77:837–849

    Article  PubMed  CAS  Google Scholar 

  • Madrid-Aliste CJ, Dybas JM, Angeletti RH et al (2009) EPIC-DB: a proteomics database for studying Apicomplexan organisms. BMC Genomics 10:38

    Article  PubMed  Google Scholar 

  • Magnuson ML, Owens JH, Kelty CA (2000) Characterization of Cryptosporidium parvum by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 66:4720–4724

    Article  PubMed  CAS  Google Scholar 

  • Mauzy MJ, Enomoto S, Lancto CA et al (2012) The Cryptosporidium parvum transcriptome during in vitro development. PLoS One 7:e31715

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  • Mutz KO, Heilkenbrinker A, Lonne M et al (2013) Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 24:22–30

    Article  PubMed  CAS  Google Scholar 

  • O’Connor RM, Wanyiri JW, Cevallos AM et al (2007) Cryptosporidium parvum glycoprotein gp40 localizes to the sporozoite surface by association with gp15. Mol Biochem Parasitol 156:80–83

    Article  PubMed  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Putignani L, Tait A, Smith HV et al (2004) Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Parasitology 129:1–18

    Article  PubMed  CAS  Google Scholar 

  • Roach JC, Boysen C, Wang K et al (1995) Pairwise end sequencing: a unified approach to genomic mapping and sequencing. Genomics 26:345–353

    Article  PubMed  CAS  Google Scholar 

  • Sam-Yellowe TY, Florens L, Wang T et al (2004) Proteome analysis of rhoptry-enriched fractions isolated from Plasmodium merozoites. J Proteome Res 3:995–1001

    Article  PubMed  CAS  Google Scholar 

  • Sanderson SJ, Xia D, Prieto H et al (2008) Determining the protein repertoire of Cryptosporidium parvum sporozoites. Proteomics 8:1398–1414

    Article  PubMed  CAS  Google Scholar 

  • Shanmugasundram A, Gonzalez-Galarza FF, Wastling JM et al (2013) Library of Apicomplexan metabolic pathways: a manually curated database for metabolic pathways of apicomplexan parasites. Nucleic Acids Res 41:D706–D713

    Article  PubMed  CAS  Google Scholar 

  • Snelling WJ, Lin Q, Moore JE et al (2007) Proteomics analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (Coccidia, Apicomplexa). Mol Cell Proteomics 6:346–355

    Article  PubMed  CAS  Google Scholar 

  • Stein LD, Mungall C, Shu S et al (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12:1599–1610

    Article  PubMed  CAS  Google Scholar 

  • Strong WB, Nelson RG (2000) Preliminary profile of the Cryptosporidium parvum genome: an expressed sequence tag and genome survey sequence analysis. Mol Biochem Parasitol 107:1–32

    Article  PubMed  CAS  Google Scholar 

  • Templeton TJ, Iyer LM, Anantharaman V et al (2004) Comparative analysis of apicomplexa and genomic diversity in eukaryotes. Genome Res 14:1686–1695

    Article  PubMed  CAS  Google Scholar 

  • Upton SJ, Tilley M, Brillhart DB (1994) Comparative development of Cryptosporidium parvum (Apicomplexa) in 11 continuous host cell lines. FEMS Microbiol Lett 118:233–236

    Article  PubMed  CAS  Google Scholar 

  • Wakaguri H, Suzuki Y, Sasaki M et al (2009) Inconsistencies of genome annotations in apicomplexan parasites revealed by 5'-end-one-pass and full-length sequences of oligo-capped cDNAs. BMC Genomics 10:312

    Article  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • Wastling JM, Xia D, Sohal A et al (2009) Proteomes and transcriptomes of the Apicomplexa–where’s the message? Int J Parasitol 39:135–143

    Article  PubMed  CAS  Google Scholar 

  • Widmer G, Corey EA, Stein B et al (2000) Host cell apoptosis impairs Cryptosporidium parvum development in vitro. J Parasitol 86:922–928

    PubMed  CAS  Google Scholar 

  • Xia D, Sanderson SJ, Jones AR et al (2008) The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation. Genome Biol 9:R116

    Article  PubMed  Google Scholar 

  • Xu P, Widmer G, Wang Y et al (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Yang YL, Serrano MG, Sheoran AS et al (2009) Over-expression and localization of a host protein on the membrane of Cryptosporidium parvum infected epithelial cells. Mol Biochem Parasitol 168:95–101

    Article  PubMed  CAS  Google Scholar 

  • Yang YL, Buck GA, Widmer G (2010) Cell sorting-assisted microarray profiling of host cell response to Cryptosporidium parvum infection. Infect Immun 78:1040–1048

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Guo F, Zhou H et al (2012) Transcriptome analysis reveals unique metabolic features in the Cryptosporidium parvum Oocysts associated with environmental survival and stresses. BMC Genomics 13:647

    Article  PubMed  CAS  Google Scholar 

  • Zhou XW, Kafsack BF, Cole RN et al (2005) The opportunistic pathogen Toxoplasma gondii deploys a diverse legion of invasion and survival proteins. J Biol Chem 280:34233–34244

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Wastling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Wastling, J.M., Randle, N.P. (2014). From Genome to Proteome: Transcriptional and Proteomic Analysis of Cryptosporidium Parasites. In: Cacciò, S., Widmer, G. (eds) Cryptosporidium: parasite and disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1562-6_7

Download citation

Publish with us

Policies and ethics