Skip to main content

Body Messaging: The Endocrine Systems

  • Chapter
  • First Online:
  • 3346 Accesses

Abstract

Cells of multicellular organisms communicate via chemical messengers secreted into the extracellular fluid. This form of communication can be found in even the simplest animals like sponges and is phylogenetically older than neural transmission (Hartenstein 2006). Some of the diffusible signals travel short distances and influence cells in the vicinity (paracrine signaling), whereas others reach their target cells via the circulatory system (endocrine and neuroendocrine signaling). Transported within body fluids, these highly specific messengers, called “hormones” (from the Greek word “hormaein,” to excite), reach most cells throughout the body, where they bind to specific receptor proteins. Their interaction with target cells depends on the presence and sensitivity of these specific receptors. By binding to different receptor subtypes, most hormones are able to trigger more than one and in many cases even opposing responses. In interaction with the nervous system, hormones coordinate the activities of many different cells and regulate growth, metabolic processes, water balance, immune function, digestion, and reproduction. The ability to cooperatively respond to environmental (exteroceptive) or internal (interoceptive) stimuli enables the body to maintain a dynamic equilibrium, the so-called homeostasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Accordi F, Chimenti C, Gallo VP, Liguori R (2006) Differentiation of chromaffin cells in the developing adrenal gland of Testudo hermanni. Anat Embryol 211:283–291

    Article  PubMed  Google Scholar 

  • Baber EC (1876) Contributions to the minute anatomy of the thyroid gland of the dog. Phil Trans R Soc Lond 166:557–568

    Article  Google Scholar 

  • Bentley PJ (1998) Comparative morphology of endocrine tissues. In: Comparative vertebrate endocrinology, 3rd edn. Cambridge University Press, Cambridge, UK, pp 15–64

    Google Scholar 

  • Bourque C, Houvras Y (2011) Hooked on zebrafish: insights into development and cancer of endocrine tissues. Endocr Relat Cancer 18:R149–R164

    Article  PubMed  CAS  Google Scholar 

  • Buffenstein R, Pinto M (2009) Endocrine function in naturally long-living small mammals. Mol Cell Endocrinol 299(1):101–111

    Article  PubMed  CAS  Google Scholar 

  • Chang SW, Barter JW, Ebitz RB, Watson KK, Platt ML (2012) Inhaled oxytocin amplifies both vicarious reinforcement and self reinforcement in rhesus macaques (Macaca mulatta). Proc Natl Acad Sci U S A 109(3):959–964

    Article  PubMed  CAS  Google Scholar 

  • Copp DH, Cameron EC (1961) Demonstration of a hypocalcemic factor (calcitonin) in commercial parathyroid extract. Science 134:2038, PMID 13881212

    Article  PubMed  CAS  Google Scholar 

  • De Loof A, Lindemans M, Liu F, De Groef B, Schoofs L (2012) Endocrine archeology: do insects retain ancestrally inherited counterparts of the vertebrate releasing hormones GnRH, GHRH, TRH, and CRF? Gen Comp Endocrinol 177(1):18–27

    Article  PubMed  CAS  Google Scholar 

  • Delange F, Iteke FB, Ermans AM (1982) Nutritional factors involved in the goitrogenic action of cassava. International Development Research Centre Publications, Ottawa, pp 1–100

    Google Scholar 

  • Denver RJ (2009) Structural and functional evolution of vertebrate neuroendocrine stress systems. Ann N Y Acad Sci 1163:1–16

    Article  PubMed  CAS  Google Scholar 

  • Dinev I (2012) Clinical and morphological investigations on the incidence of forms of rickets and their association with other pathological states in broiler chickens. Res Vet Sci 92(2):273–277

    Article  PubMed  CAS  Google Scholar 

  • Döcke F (1994) Veterinärmedizinische Endokrinologie, 3rd edn. Fischer, Jena, Germany

    Google Scholar 

  • Eatwell K (2013) Nutritional secondary hyperparathyroidism in reptiles. In: Rand J (ed) Clinical endocrinology of companion animals. Wiley-Blackwell, Ames, pp 396–403

    Google Scholar 

  • Ebanasar J, Inbamani N (1989) Histomorphology of thyroid gland in a ground lizard Sitana ponticeriana (Cuvier). ANJAC J 9:85–95

    Google Scholar 

  • Elsalini OA, von Gartzen J, Cramer M, Rohr KB (2003) Zebrafish hhex, nk2.1a, and pax2.1 regulate thyroid growth and differentiation downstream of nodal-dependent transcription factors. Dev Biol 263(1):67–80

    Article  PubMed  CAS  Google Scholar 

  • Feldman EC, Nelson RW (2004) Canine and feline endocrinology and reproduction, 3rd edn. Saunders, St. Louis

    Google Scholar 

  • Ferguson GW, Heller H (1965) Distribution of neurohypophysial hormones in mammals. J Physiol 180:846–863

    PubMed  CAS  Google Scholar 

  • Frigato E, Vallone D, Bertolucci C, Foulkes NS (2006) Isolation and characterization of melanopsin and pinopsin expression within photoreceptive sites of reptiles. Naturwissenschaften 93:379–385

    Article  PubMed  CAS  Google Scholar 

  • Ganong WF (2001) The pituitary gland. In: Review of medical physiology, 20th edn. McGraw-Hill, New York, pp 383–397

    Google Scholar 

  • Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190:555–570

    Article  PubMed  CAS  Google Scholar 

  • Hazlerigg D, Loudon A (2008) New insights into ancient seasonal life timers. Curr Biol 18:R795–R804

    Article  PubMed  CAS  Google Scholar 

  • Hill RW, Wyse GA, Anderson M (2008) Endocrine and neuroendocrine physiology. In: Animal physiology, 2nd edn. Sinauer Associates, Sunderland, MA, pp 391–424

    Google Scholar 

  • Hirsch PF, Lester GE, Talmage RV (2001) Calcitonin, an enigmatic hormone: does it have a function? J Musculoskel Neuron Interact 1:299–305

    CAS  Google Scholar 

  • Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Endocrinol Metab 89(6):2548–2556

    Article  CAS  Google Scholar 

  • LeVine DB, Zhou Y, Ghiloni RJ, Fields EL, Birkenheuer AJ, Gookin JL, Roberston ID, Malloy PJ, Feldman D (2009) Hereditary 1,25-dihydroxyvitamin D-resistant rickets in a Pomeranian dog caused by a novel mutation in the Vitamin D receptor gene. J Vet Intern Med 23(6):1278–1283

    Article  PubMed  CAS  Google Scholar 

  • Lo CY (2002) Parathyroid autotransplantation during thyroidectomy. ANZ J Surg 72:902–907

    Article  PubMed  Google Scholar 

  • Nickel R, Schummer A, Seiferle E (2004) Lehrbuch der Anatomie der Haustiere 4, Nervensystem, Sinnesorgane, Endokrine Drüsen, 4th edn. Parey, Stuttgart, Germany

    Google Scholar 

  • Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB (2008) Hormones and the endocrine system. In: Wilbur B (ed) Campbell biology. Global edition, 9th edn. Pearson Education, San Francisco, CA, pp 1020–1041

    Google Scholar 

  • Rehfeld JF (1989) The new biology of gastrointestinal hormones. Phys Rev 78:1087–1108

    Google Scholar 

  • Rindi G, Bordi C (2006) Classification of neuroendocrine tumours. In: Caplin M, Kvols L (eds) Handbook of neuroendocrine tumours. Their current and future management. BioScientifica Ltd., Bristol, UK, pp 39–51

    Google Scholar 

  • Schatz S, Palme R (2001) Measurement of faecal cortisol metabolites in cats and dogs: a non-invasive method for evaluating adrenocortical function. Vet Res Commun 25:271–287

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Wortsman J, Paus R, Elias PM, Tobin DJ, Feingold KR (2008) Skin as an endocrine organ: implications for its function. Drug Disc Today Dis Mech 5(2):137–144

    Article  Google Scholar 

  • Sristava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, Hamon M, Smith T, Evans PD (2005) Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel drosophila G-protein-coupled receptor. J Neurosci 25(26):6145–6155

    Article  Google Scholar 

  • Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480(7375):57–62

    Article  PubMed  CAS  Google Scholar 

  • Wendler A, Baldi E, Harvey BJ, Nadal A, Norman A, Wehling M (2010) Position paper: rapid responses to steroids: current status and future prospects. Eur J Endocrinol 162:825–830

    Article  PubMed  CAS  Google Scholar 

  • West GB (1995) The comparative pharmacology of the suprarenal medulla. Q Rev Biol 30:116–137

    Article  Google Scholar 

  • Wilson-Pauwels L, Steward PA, Akesson EJ (1997) Autonomic nerves. B.C. Decker Inc., Hamilton

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank crossip communications, Vinna, for kind support in figure preparations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florian K. Zeugswetter or Erika Jensen-Jarolim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Zeugswetter, F.K., Jensen-Jarolim, E. (2014). Body Messaging: The Endocrine Systems. In: Jensen-Jarolim, E. (eds) Comparative Medicine. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1559-6_8

Download citation

Publish with us

Policies and ethics