Advertisement

Progress Towards New Treatments for Human African Trypanosomiasis

  • Jose A. Garcia-Salcedo
  • Jane C. Munday
  • Juan D. Unciti-Broceta
  • Harry P. de KoningEmail author
Chapter

Abstract

The treatment of African trypanosomiasis has essentially remained unchanged for decades. A mountain of excellent work has been produced on many aspects of trypanosome biochemistry, biology, genetics, etc., but this has not translated into new therapies, although the disease burden has steadily increased through the latter half of the twentieth century. The only new drug to be introduced in the last 50 years or so is eflornithine, in the late 1970s, for the treatment of late-stage gambiense sleeping sickness only. However, this was in many ways unsatisfactory and melarsoprol remained the first-line treatment for late-stage sleeping sickness until an alarming increase in treatment failures necessitated change. Since the emerging sleeping sickness epidemic became widely recognised, around the year 2000, needs-driven development of new drugs, and the preservation of the production of old drugs, has been the result of dedicated work by organisations such as the World Health Organisation, the Drugs for Neglected Diseases initiative (DNDi), the Access to Essential Medicines campaign, and the Consortium for Parasitic Drug Development (CPDD) among others, much of it in partnership with academia and the pharmaceutical industry. This has already resulted in milestones such as the donations of free treatments by producers; improved drug distribution, case finding and clinical care; an improved 10-day melarsoprol treatment; the first clinical trial for an oral sleeping sickness drug—pafuramidine and the introduction of eflornithine–nifurtimox combination therapy to begin replacing melarsoprol. While these efforts have undoubtedly contributed to reducing the disease burden in central Africa, newer treatments are still very necessary, especially as most current treatments are threatened by drug resistance. Here, we review recent advances in understanding drug resistance mechanisms, progress towards new drugs, and new delivery systems to improve efficacy.

Keywords

Human African Trypanosomiasis Bloodstream Form Major Intrinsic Protein Vinyl Sulfone Trypanocidal Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdulla MH, O’Brien T, Mackey ZB et al (2008) RNA interference of Trypanosoma brucei cathepsin B and L affects disease progression in a mouse model. PLoS Negl Trop Dis 2:e298PubMedGoogle Scholar
  2. Allen CL, Goulding D, Field MC (2003) Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J 22:4991–5002PubMedGoogle Scholar
  3. Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung K-F, Turner DJ, Field MC, Berriman M, Horn D (2012) High-throughput decoding of anti-trypanosomal drug efficacy and resistance. Nature 482:232–236PubMedGoogle Scholar
  4. Ang KKH, Ratnam J, Gut J et al (2011) Mining a cathepsin inhibitor library for new antiparasitic drug leads. PLoS Negl Trop Dis 5:e1023PubMedGoogle Scholar
  5. Atougia JLM, Kennedy PGE (2000) Neurological aspects of human trypanosomiasis. In: Le D, Kennedy PGE (eds) Infectious diseases of the nervous system. Butterowrth-Heinemann, Oxford, pp 321–372Google Scholar
  6. Baker N, Alsford S, Horn D (2011) Genome-wide RNAi screens in African trypanosomes identify the nifurtimox activator NTR and the eflornithine transporter AAT6. Mol Biochem Parasitol 176:55–57PubMedGoogle Scholar
  7. Baker N, Glover L, Munday JC et al (2012) Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proc Natl Acad Sci USA 109:10996–11001PubMedGoogle Scholar
  8. Baker N, de Koning HP, Mäser P, Horn D (2013) Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol 29:110–118PubMedGoogle Scholar
  9. Baral TN, Magez S, Stijlemans B et al (2006) Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med 12:580–584PubMedGoogle Scholar
  10. Barquilla A, Crespo JL, Navarro M (2008) Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation. Proc Natl Acad Sci USA 105:14579–14584PubMedGoogle Scholar
  11. Barrett MP, Croft SL (2012) Management of trypanosomiasis and leishmaniasis. Br Med Bull 104:175–196PubMedGoogle Scholar
  12. Bassarak B, Uzcátegui NL, Schönfeld C, Duszenko M (2011) Functional characterization of three aquaglyceroporins from Trypanosoma brucei in osmoregulation and glycerol transport. Cell Physiol Biochem 27:411–420PubMedGoogle Scholar
  13. Basselin M, Denise H, Coombs GH, Barrett MP (2002) Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrob Agents Chemother 46:3731–3738PubMedGoogle Scholar
  14. Beitz E (2005) Aquaporins from pathogenic protozoan parasites: structure, function and potential for chemotherapy. Biol Cell 97:373–383PubMedGoogle Scholar
  15. Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci USA 103:269–274PubMedGoogle Scholar
  16. Bhatnagar RS, Futterer K, Waksman G, Gordon JI (1999) The structure of myristoyl-CoA:protein N-myristoyltransferase. Biochim Biophys Acta 1441:162–172PubMedGoogle Scholar
  17. Bosch F, Rosich L (2008) The contributions of Paul Ehrlich to Pharmacology: a tribute on the occasion of the centenary of his Nobel prize. Pharmacology 82:171–179PubMedGoogle Scholar
  18. Bowyer PW, Tate EW, Leatherbarrow RJ et al (2008) N-Myristoyltransferase: a prospective drug target for protozoan parasites. ChemMedChem 3:402–408PubMedGoogle Scholar
  19. Brand S, Cleghorn LAT, McElroy SP et al (2012) Discovery of a novel class of orally active trypanocidal N-myristoyltransferase inhibitors. J Med Chem 55:140–152PubMedGoogle Scholar
  20. Bridges D, Gould MK, Nerima B et al (2007) Loss of the High Affinity Pentamidine Transporter is responsible for high levels of cross-resistance between arsenical and diamidine drugs in African trypanosomes. Mol Pharmacol 71:1098–1108PubMedGoogle Scholar
  21. Browning CH, Morgan GT, Robb JVM, Walls LP (1938) The trypanocidal action of certain phenanthridinium compounds. J Pathol Bacteriol 46:203Google Scholar
  22. Bruce D (1895) Preliminary report on the tsetse fly disease or nagana, in Zululand. Harrison & Sons, LondonGoogle Scholar
  23. Carter NS, Fairlamb AH (1993) Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature 361:173–176PubMedGoogle Scholar
  24. Carter NS, Berger BJ, Fairlamb AH (1995) Uptake of diamidine drugs by the P2 nucleoside transporter in melarsen-sensitive and -resistant Trypanosoma brucei brucei. J Biol Chem 270:28153–28157PubMedGoogle Scholar
  25. Chen YT, Lira R, Hansell E et al (2008) Synthesis of macrocyclic trypanosomal cysteine protease inhibitors. Bioorg Med Chem Lett 18:5860–5863PubMedGoogle Scholar
  26. Clayton J (2010) Chagas disease: pushing through the pipeline. Nature 465:S12–S15PubMedGoogle Scholar
  27. De Koning HP (2001) Uptake of pentamidine in Trypanosoma brucei brucei is mediated by three distinct transporters. Implications for crossresistance with arsenicals. Mol Pharmacol 59:586–592PubMedGoogle Scholar
  28. De Koning HP (2008) The ever-increasing complexities of arsenical-diamidine cross-resistance in African trypanosomes. Trends Parasitol 24:345–349PubMedGoogle Scholar
  29. De Koning HP, Stewart M, Anderson L et al (2004) The trypanocide diminazene aceturate is accumulated predominantly through the TbAT1 purine transporter; additional insights in diamidine resistance in African trypanosomes. Antimicrob Agents Chemother 48:1515–1519PubMedGoogle Scholar
  30. De Koning HP, Gould MK, Sterk GJ et al (2012) Pharmacological validation of Trypanosoma brucei phosphodiesterases as novel drug targets. J Infect Dis 206:229–237PubMedGoogle Scholar
  31. Delespaux V, De Koning HP (2007) Drugs and drug resistance in African trypanosomiasis. Drug Resist Updat 10:30–50PubMedGoogle Scholar
  32. Delespaux V, De Koning HP (2013) Transporters in antiparasitic drug development and resistance. In: Jäger T, Koch O, Flohé L (eds) Trypanosomatid diseases: molecular routes to drug discovery. Wiley-VCH, Weinheim, Germany, pp 335–350Google Scholar
  33. Delespaux V, Chitanga S, Geysen D et al (2006) SSCP analysis of the P2 purine transporter TcoAT1 gene of Trypanosoma congolense leads to a simple PCR-RFLP test allowing the rapid identification of diminazene resistant stocks. Acta Trop 100:96–102PubMedGoogle Scholar
  34. Delespaux V, Geysen D, Van den Bossche P, Geerts S (2008) Molecular tools for the rapid detection of drug resistance in animal trypanosomes. Trends Parasitol 245:236–242Google Scholar
  35. Diaz-Gonzalez R, Kuhlmann FM, Galan-Rodriguez C et al (2011) The susceptibility of trypanosomatid pathogens to PI3/mTOR kinase inhibitors affords a new opportunity for drug repurposing. PLoS Negl Trop Dis 5:e1297PubMedGoogle Scholar
  36. Ding D, Zhao Y, Meng Q et al (2010) Discovery of novel benzoxaborole-based potent antitrypanosomal agents. ACS Med Chem Lett 1:165–169Google Scholar
  37. Duggan AJ (1970) An historical perspective. In: Mulligan HW (ed) The African trypanosomiases. George Allen & Unwin, London, pp 41–88Google Scholar
  38. Farazi TA, Waksman G, Gordon JI (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276:39501–39504PubMedGoogle Scholar
  39. Fèvre EM, Coleman OG, Welburn SC, Maudlin I (2004) Reanalysing the 1900–1920 sleeping sickness epidemic in Uganda. Emerg Infect Dis 10:567573Google Scholar
  40. Figarella K, Uzcategui NL, Zhou Y et al (2007) Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol Microbiol 65:1006–1017PubMedGoogle Scholar
  41. Frearson JA, Brand S, McElroy SP et al (2010) N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature 464:728–732PubMedGoogle Scholar
  42. Friedheim EA (1949) Mel B in the treatment of human trypanosomiasis. Am J Trop Med Hyg 29:173–180PubMedGoogle Scholar
  43. Geerts S, Holmes PH, Eisler MC, Diall O (2001) African bovine trypanosomiasis: the problem of drug resistance. Trends Parasitol 17:25–28PubMedGoogle Scholar
  44. Gorbal B, Sonuc N, Bhattacharjee H et al (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017Google Scholar
  45. Gould MK, De Koning HP (2011) Cyclic nucleotide signalling in protozoa. FEMS Microbiol Rev 35:515–541PubMedGoogle Scholar
  46. Greenbaum DC, Mackey Z, Hansell E et al (2004) Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. J Med Chem 47:3212–3219PubMedGoogle Scholar
  47. Hua S, To WY, Nguyen TT et al (1996) Purification and characterization of proteasomes from Trypanosoma brucei. Mol Biochem Parasitol 78:33–46PubMedGoogle Scholar
  48. Jackson AP, Allison HC, Barry JD et al (2013) A cell-surface phylome for African trypanosomes. PLoS Negl Trop Dis 7:e2121PubMedGoogle Scholar
  49. Jacobs WA, Heidelberger M (1919) Aromatic arsenic compounds V. N-substituted glycylarsanilic acids. J Am Chem Soc 41:1809–1821Google Scholar
  50. Jacobs RT, Nare B, Wring SA et al (2011) SCYX-7158, an Orally-Active Benzoxaborole for the Treatment of Stage 2 Human African Trypanosomiasis. PLoS Negl Trop Dis 5:e1151PubMedGoogle Scholar
  51. Jansen C, Wang H, Kooistra AJ et al (2013) Discovery of Novel Trypanosoma brucei Phosphodiesterase B1 Inhibitors by Virtual Screening against the Unliganded TbrPDEB1 Crystal Structure. J Med Chem 56:2087–2096PubMedGoogle Scholar
  52. Jennings FW, Urquhart GM (1983) The use of the 2 substituted 5-nitroimidazole, Fexinidazole (Hoe 239) in the treatment of chronic T. brucei infections in mice. Z Parasitenkd 69:577–581PubMedGoogle Scholar
  53. Jennings FW, Atouguia JM, Murray M (1996) Topical chemotherapy for experimental murine African CNS-trypanosomiasis: the successful use of the arsenical, melarsoprol, combined with the 5-nitroimidazoles, fexinidazole or MK-436. Trop Med Int Health 1:590–598PubMedGoogle Scholar
  54. Kaiser M, Bray MA, Cal M et al (2011) Antitrypanosomal activity of fexinidazole, a new oral nitroimidazole drug candidate for treatment of sleeping sickness. Antimicrob Agents Chemother 55:5602–5608PubMedGoogle Scholar
  55. Kaminsky R, Mäser P (2000) Drug resistance in African trypanosomes. Curr Opin Anti-infect Investig Drugs 2:76–82Google Scholar
  56. Kathiravan MK, Salake AB, Chothe AS et al (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698PubMedGoogle Scholar
  57. Keiser J, Ericsson O, Burri C (2000) Investigations of the metabolites of the trypanocidal drug melarsoprol. Clin Pharmacol Ther 67:478–488PubMedGoogle Scholar
  58. Kuepfer I, Schmid C, Allan M et al (2012) Safety and efficacy of the 10-day melarsoprol schedule for the treatment of second stage rhodesiense sleeping sickness. PLoS Negl Trop Dis 6:e1695PubMedGoogle Scholar
  59. Kunz S, Beavo JA, D’Angelo MA et al (2006) Cyclic nucleotide specific phosphodiesterases of the kinetoplastida: a unified nomenclature. Mol Biochem Parasitol 145:133–135PubMedGoogle Scholar
  60. Lanteri CA, Tidwell RR, Meshnick SR (2008) The mitochondrion is a site of trypanocidal action of the aromatic diamidine DB75 in bloodstream forms of Trypanosoma brucei. Antimicrob Agents Chemother 52:875–882PubMedGoogle Scholar
  61. Legros D, Evans S, Maiso F et al (1999) Risk factors for treatment failure after melarsoprol for Trypanosoma brucei gambiense trypanosomiasis in Uganda. Trans R Soc Trop Med Hyg 93:439–442PubMedGoogle Scholar
  62. Lepesheva GI, Waterman MR (2007) Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta 1770:467–477PubMedGoogle Scholar
  63. Lepesheva GI, Ott RD, Hargrove TY et al (2007) Sterol 14α-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth. Chem Biol 14:1283–1293PubMedGoogle Scholar
  64. Lepesheva GI, Hargrove TY, Kleshchenko Y, Nes WD, Villalta F, Waterman MR (2008) CYP51: a major drug target in the cytochrome P450 superfamily. Lipids 43:1117–1125PubMedGoogle Scholar
  65. Lepesheva GI, Hargrove TY, Anderson S et al (2010a) Structural insights into inhibition of sterol 14alpha-demethylase in the human pathogen Trypanosoma cruzi. J Biol Chem 285:25582–25590PubMedGoogle Scholar
  66. Lepesheva GI, Park HW, Hargrove TY et al (2010b) Crystal structures of Trypanosoma brucei sterol 14α-demethylase and implications for selective treatment of human infections. J Biol Chem 285:1773–1780PubMedGoogle Scholar
  67. Lepesheva GI, Villalta F, Waterman MR (2011) Targeting Trypanosoma cruzi sterol 14α-demethylase (CYP51). Adv Parasitol 75:65–87PubMedGoogle Scholar
  68. Leslie M (2011) Drug developers finally take aim at a neglected disease. Science 333:933–935PubMedGoogle Scholar
  69. Li H, Chen H, Steinbronn C et al (2011) Enhancement of proton conductance by mutations of the selectivity filter of aquaporin-1. J Mol Biol 407:607–620PubMedGoogle Scholar
  70. Loftsson T, Duchene D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11PubMedGoogle Scholar
  71. Lourie EM, Yorke W (1937) Studies in Chemotherapy XVI: the trypanocidal action of synthalin. Ann Trop Med Parasitol 31:435–445Google Scholar
  72. Mackey ZB, O’Brien TC, Greenbaum DC et al (2004) A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J Biol Chem 279:48426–48433PubMedGoogle Scholar
  73. Mackey ZB, Koupparis K, Nishino M, McKerrow JH (2011) High-throughput analysis of an RNAi library identifies novel kinase targets in Trypanosoma brucei. Chem Biol Drug Des 78:454–463PubMedGoogle Scholar
  74. Mallari JP, Shelat AA, Obrien T et al (2008) Development of potent purine-derived nitrile inhibitors of the trypanosomal protease TbcatB. J Med Chem 51:545–552PubMedGoogle Scholar
  75. Mallari JP, Shelat AA, Kosinski A et al (2009) Structure-guided development of selective TbcatB inhibitors. J Med Chem 52:6489–6493PubMedGoogle Scholar
  76. Mallari JP, Zhu F, Lemoff A et al (2010) Optimization of purine-nitrile TbcatB inhibitors for use in vivo and evaluation of efficacy in murine models. Bioorg Med Chem 18:8302–8309PubMedGoogle Scholar
  77. Mäser P, Sütterlin C, Kralli A, Kaminsky R (1999) A nucleoside transporter from Trypanosoma brucei involved in drug resistance. Science 285:242–244PubMedGoogle Scholar
  78. Mäser P, Wittlin S, Rottman M et al (2012) Antiparasitic agents: new drugs on the horizon. Curr Opin Pharmacol 12:562–566PubMedGoogle Scholar
  79. Matovu E, Stewart M, Geiser F et al (2003) The mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei. Eukaryot Cell 2:1003–1008PubMedGoogle Scholar
  80. Mdachi RE, Thuita JK, Kagira JM et al (2009) Efficacy of the novel diamidine compound 2,5-Bis(4-amidinophenyl)- furan-bis-O-Methlylamidoxime (Pafuramidine, DB289) against Trypanosoma brucei rhodesiense infection in vervet monkeys after oral administration. Antimicrob Agents Chemother 53:953–957PubMedGoogle Scholar
  81. Mercer L, Bowling T, Perales J et al (2011) 2,4-Diaminopyrimidines as potent inhibitors of Trypanosoma brucei and identification of molecular targets by a chemical proteomics approach. PLoS Negl Trop Dis 5:e956PubMedGoogle Scholar
  82. Mills E, Price HP, Johner A et al (2007) Kinetoplastid PPEF phosphatases: dual acylated proteins expressed in the endomembrane system of Leishmania. Mol Biochem Parasitol 152:22–34PubMedGoogle Scholar
  83. Morty RE, Troeberg L, Pike RN et al (1998) A trypanosome oligopeptidase as a target for the trypanocidal agents pentamidine, diminazene and suramin. FEBS Lett 433:251–256PubMedGoogle Scholar
  84. Morty RE, Lonsdale-Eccles JD, Morehead J et al (1999) Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases. J Biol Chem 274:26149–26156PubMedGoogle Scholar
  85. Morty RE, Troeberg L, Powers JC et al (2000) Characterisation of the antitrypanosomal activity of peptidyl alpha-aminoalkyl phosphonate diphenyl esters. Biochem Pharmacol 60:1497–1504PubMedGoogle Scholar
  86. Morty RE, Lonsdale-Eccles JD, Mentele R et al (2001) Trypanosome-derived oligopeptidase B is released into the plasma of infected rodents, where it persists and retains full catalytic activity. Infect Immun 69:2757–2761PubMedGoogle Scholar
  87. Munday JC, Rojas López KE, Eze AA et al (2013) Functional expression of TcoAT1 reveals it to be a P1-type nucleoside transporter with no capacity for diminazene uptake. Int J Parasitol Drugs Drug Resist 3:69–76Google Scholar
  88. Muyldermans S (2001) Single domain camel antibodies: current status. J Biotechnol 74:277–302PubMedGoogle Scholar
  89. Nare B, Wring S, Bacchi C et al (2010) Discovery of novel orally bioavailable oxaborole 6-carboxamides that demonstrate cure in a murine model of late-stage central nervous system African trypanosomiasis. Antimicrob Agents Chemother 54:4379–4388PubMedGoogle Scholar
  90. Nguyen VK, Desmyter A, Muyldermans S (2001) Functional heavy-chain antibodies in Camelidae. Adv Immunol 79:261–296PubMedGoogle Scholar
  91. O’Brien TC, Mackey ZB, Fetter RD et al (2008) A parasite cysteine protease is key to host protein degradation and iron acquisition. J Biol Chem 283:28934–28943PubMedGoogle Scholar
  92. Oberholzer M, Marti G, Baresic M et al (2007) The Trypanosoma brucei cAMP phosphodiesterases TbrPDEB1 and TbrPDEB2: flagellar enzymes that are essential for parasite virulence. FASEB J 21:720–731PubMedGoogle Scholar
  93. Ochiana SO, Gustafson A, Bland ND et al (2012) Synthesis and evaluation of human phosphodiesterases (PDE) 5 inhibitor analogs as trypanosomal PDE inhibitors. Part 2. Tadalafil analogs. Bioorg Med Chem Lett 22:2582–2584PubMedGoogle Scholar
  94. Oduor RO, Ojo KK, Williams GP et al (2011) Trypanosoma brucei glycogen synthase kinase-3, a target for anti-trypanosomal drug development: a public-private partnership to identify novel leads. PLoS Negl Trop Dis 5:e1017PubMedGoogle Scholar
  95. Ojo KK, Gillespie JR, Riechers AJ et al (2008) Glycogen synthase kinase 3 is a potential drug target for African trypanosomiasis therapy. Antimicrob Agents Chemother 52:3710–3717PubMedGoogle Scholar
  96. Olego-Fernandez S, Vaughan S, Shaw MK et al (2009) Cell morphogenesis of Trypanosoma brucei requires the paralogous, differentially expressed calpain-related proteins CAP5.5 and CAP5.5V. Protist 160:576–590PubMedGoogle Scholar
  97. Orrling KM, Jansen C, Vu XL et al (2012) Catechol pyrazolinones as trypanocidals: fragment-based design, synthesis, and pharmacological evaluation of nanomolar inhibitors of trypanosomal phosphodiesterase B1. J Med Chem 55:8745–8756PubMedGoogle Scholar
  98. Paine MF, Wang M, Boykin D et al (2010) Diamidines for human African trypanosomiasis. Curr Opin Investig Drugs 11:876–883PubMedGoogle Scholar
  99. Parsons M, Worthey EA, Ward PN, Mottram JC (2005) Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6:127PubMedGoogle Scholar
  100. Pépin J, Milord F, Meurice F et al (1992) High-dose nifurtimox for arseno-resistant Trypanosoma brucei gambiense sleeping sickness: an open trial in central Zaire. Trans R Soc Trop Med Hyg 86:254–256PubMedGoogle Scholar
  101. Perales JB, Freeman J, Bacchi CJ et al (2011) SAR of 2-amino and 2,4-diamino pyrimidines with in vivo efficacy against Trypanosoma brucei. Bioorg Med Chem Lett 21:2816–2819PubMedGoogle Scholar
  102. Phillips MA, Wang CC (1987) A Trypanosoma brucei mutant resistant to alpha-difluoromethylornithine. Mol Biochem Parasitol 22:9–17PubMedGoogle Scholar
  103. Price HP, Menon MR, Panethymitaki C et al (2003) Myristoyl-CoA:protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J Biol Chem 278:7206–7214PubMedGoogle Scholar
  104. Price HP, Panethymitaki C, Goulding D, Smith DF (2005) Functional analysis of TbARL1, an N-myristoylated Golgi protein essential for viability in bloodstream trypanosomes. J Cell Sci 118:831–841PubMedGoogle Scholar
  105. Price HP, Stark M, Smith DF (2007) Trypanosoma brucei ARF1 plays a central role in endocytosis and Golgi-lysosome trafficking. Mol Biol Cell 18:864–873PubMedGoogle Scholar
  106. Price HP, Guther ML, Ferguson MA, Smith DF (2010) Myristoyl-CoA:protein N-myristoyltransferase depletion in trypanosomes causes avirulence and endocytic defects. Mol Biochem Parasitol 169:55–58PubMedGoogle Scholar
  107. Qiao Z, Wang Q, Zhang F et al (2012) Chalcone-benzoxaborole hybrid molecules as potent antitrypanosomal agents. J Med Chem 12:3553–3557Google Scholar
  108. Robays J, Nyamowala G, Sese C et al (2008) High failure rates of melarsoprol for sleeping sickness, Democratic Republic of Congo. Emerg Infect Dis 14:966–967PubMedGoogle Scholar
  109. Roberts CW, McLeod R, Rice DW et al (2003) Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol 126:129–142PubMedGoogle Scholar
  110. Rodgers J, Jones A, Gibaud S et al (2011) Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis. PLoS Negl Trop Dis 5:e1308PubMedGoogle Scholar
  111. Schlitzer M (2009) Wirkstoffe zur Behandlung der Afrikanischen Schlafkrankheit. Im letzten Jahrhundert entwickelt. Pharm Unserer Zeit 6:552–558Google Scholar
  112. Schumann Burkard G, Jutzi P, Roditi I (2011) Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol Biochem Parasitol 175:91–94PubMedGoogle Scholar
  113. Scory S, Caffrey CR, Stierhof YD et al (1999) Trypanosoma brucei: killing of bloodstream forms in vitro and in vivo by the cysteine proteinase inhibitor Z-phe-ala-CHN2. Exp Parasitol 91:327–333PubMedGoogle Scholar
  114. Scory S, Stierhof YD, Caffrey CR, Steverding D (2007) The cysteine proteinase inhibitor Z-Phe-Ala-CHN2 alters cell morphology and cell division activity of Trypanosoma brucei bloodstream forms in vivo. Kinetoplastid Biol Dis 6:2PubMedGoogle Scholar
  115. Scott AG, Tait A, Turner CM (1997) Trypanosoma brucei: lack of cross-resistance to melarsoprol in vitro by cymelarsan-resistant parasites. Exp Parasitol 86:181–190PubMedGoogle Scholar
  116. Seebeck T, Sterk GJ, Ke H (2011) Phosphodiesterase inhibitors as a new generation of antiprotozoan drugs: exploiting the benefit of enzymes that are highly conserved between host and parasite. Future Med Chem 3:1289–1306PubMedGoogle Scholar
  117. Shakur Y, De Koning HP, Ke H et al (2011) Therapeutic potential of phosphodiesterase inhibitors in parasitic diseases. Handb Exp Pharmacol 204:487–510PubMedGoogle Scholar
  118. Singh N, Kumar M, Singh RK (2012) Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med 5:485–497PubMedGoogle Scholar
  119. Sokolova AY, Wyllie S, Patterson S et al (2010) Cross-resistance to nitro drugs and implications for treatment of human African trypanosomiasis. Antimicrob Agents Chemother 54:2893–2900PubMedGoogle Scholar
  120. Steverding D (2010) The development of drugs for treatment of sleeping sickness: a historical review. Parasit Vectors 3:15PubMedGoogle Scholar
  121. Steverding D, Spackman RW, Royle HJ, Glenn RJ (2005) Trypanocidal activities of trileucine methyl vinyl sulfone proteasome inhibitors. Parasitol Res 95:73–76PubMedGoogle Scholar
  122. Steverding D, Baldisserotto A, Wang X, Marastoni M (2011) Trypanocidal activity of peptidyl vinyl ester derivatives selective for inhibition of mammalian proteasome trypsin-like activity. Exp Parasitol 128:444–447PubMedGoogle Scholar
  123. Stijlemans B, Conrath K, Cortez-Retamozo V et al (2004) Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J Biol Chem 279:1256–1261PubMedGoogle Scholar
  124. Torreele E, Bourdin Trunz B, Tweats D et al (2010) Fexinidazole – a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl Trop Dis 4:e923PubMedGoogle Scholar
  125. Troeberg L, Chen X, Flaherty TM et al (2000) Chalcone, acyl hydrazide, and related amides kill cultured Trypanosoma brucei brucei. Mol Med 6:660–669PubMedGoogle Scholar
  126. Tsukaguchi H, Meremowicz S, Morton CC, Hediger MA (1999) Fuctional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Physiol 277:F685–F696PubMedGoogle Scholar
  127. Tweats D, Bourdin Trunz B, Torreele E (2012) Genotoxicity profile of fexinidazole–∜a drug candidate in clinical development for human African trypanomiasis (sleeping sickness). Mutagenesis 27:523–532PubMedGoogle Scholar
  128. Unciti-Broceta JD, Maceira J, Morales S et al (2013) Nicotinamide inhibits the lysosomal cathepsin b-like protease and kills African trypanosomes. J Biol Chem 288:10548–10557PubMedGoogle Scholar
  129. Urbaniak MD, Mathieson T, Bantscheff M et al (2012) Chemical proteomic analysis reveals the drugability of the kinome of Trypanosoma brucei. ACS Chem Biol 7:1858–1865PubMedGoogle Scholar
  130. Urbina JA (2013) Ergosterol biosynthesis for the specific treatment of Chagas disease: from basic science to clinical trials. In: Jäger T, Koch O, Flohé L (eds) Trypanosomatid diseases: molecular routes to drug discovery. Wiley-VCH, Weinheim, Germany, pp 489–514Google Scholar
  131. Uzcategui NL, Szallies A, Pavlovic-Djuranovic S et al (2004) Cloning, heterologous expression, and characterization of three aquaglyceroporins from Trypanosoma brucei. J Biol Chem 279:42669–42676PubMedGoogle Scholar
  132. Vermelho AB, Giovanni-de-Simone S, d’Avila-Levy CM et al (2007) Trypanosomatidae peptidases: a target for drugs development. Curr Enzym Inhib 3:19–48Google Scholar
  133. Vincent IM, Creek D, Watson DG et al (2010) A molecular mechanism for eflornithine resistance in African trypanosomes. PLoS Pathog 6:e1001204PubMedGoogle Scholar
  134. Wang CC, Bozdech Z, Liu CL et al (2003) Biochemical analysis of the 20 S proteasome of Trypanosoma brucei. J Biol Chem 278:15800–15808PubMedGoogle Scholar
  135. Wang H, Yan Z, Geng J et al (2007) Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite-selective inhibitors. Mol Microbiol 66:1029–1038PubMedGoogle Scholar
  136. Wang C, Ashton TD, Gustafson A et al (2012a) Synthesis and evaluation of human phosphodiesterases (PDE) 5 inhibitor analogs as trypanosomal PDE inhibitors. Part 1. Sildenafil analogs. Bioorg Med Chem Lett 22:2579–2581PubMedGoogle Scholar
  137. Wang H, Kunz S, Chen G et al (2012b) Biological and structural characterization of Trypanosoma cruzi phosphodiesterase C and Implications for design of parasite selective inhibitors. J Biol Chem 287:11788–11797PubMedGoogle Scholar
  138. Watkins TI, Woolfe G (1952) Effect of changing the quaternizing group on the trypanocidal activity of dimidium bromide. Nature 169:506PubMedGoogle Scholar
  139. Wenzler T, Boykin DW, Ismail MA et al (2009) New treatment option for second-stage African sleeping sickness: in vitro and in vivo efficacy of aza analogs of DB289. Antimicrob Agents Chemother 53:4185–4192PubMedGoogle Scholar
  140. Williams RA, Tetley L, Mottram JC, Coombs GH (2006) Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol Microbiol 61:655–674PubMedGoogle Scholar
  141. Williamson J (1970) Review of chemotherapeutic and chemoprophylactic agents. In: Mulligan HW (ed) The African trypanosomiases. George Allen & Unwin, London, pp 125–221Google Scholar
  142. Wragg WR, Washbourne K, Brown KN, Hill J (1958) Metamidium: a new trypanocidal drug. Nature 182:1005–1006PubMedGoogle Scholar
  143. Yun O, Priotto GG, Tong J et al (2010) NECT is next: implementing the new drug combination therapy for Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis 4:e720PubMedGoogle Scholar
  144. Zeuthen T, Wu B, Pavlovic-Djuranovic S et al (2006) Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei. Mol Microbiol 61:1598–1608PubMedGoogle Scholar
  145. Zoraghi R, Seebeck T (2002) The cAMP-specific phosphodiesterase TbPDE2C is an essential enzyme in bloodstream form Trypanosoma brucei. Proc Natl Acad Sci USA 99:4343–4348PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Jose A. Garcia-Salcedo
    • 1
  • Jane C. Munday
    • 2
    • 3
  • Juan D. Unciti-Broceta
    • 1
  • Harry P. de Koning
    • 2
    Email author
  1. 1.Infectious Diseases UnitSan Cecilio University Hospital, Biosanitary Research Institute of GranadaGranadaSpain
  2. 2.Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
  3. 3.Wellcome Trust Centre for Molecular ParasitologyUniversity of GlasgowGlasgowUK

Personalised recommendations