Advertisement

Diagnosis of African Trypanosomiasis

  • Philippe BüscherEmail author
Chapter

Abstract

In African trypanosomiasis, diagnosis is complex since several diseases are caused by different parasites and occur in different host species giving rise to a variety of parasite–host relationships. At one end of the spectrum we find acute or chronic but fatal diseases, while at the other end long-lasting subclinical and almost commensal infections are observed. The result is that all diagnostic methods, whether clinical or molecular, have their limitations that will define how, where and for what particular trypanosomiasis they will eventually be applied, alone or in combination. Research on diagnosis of African trypanosomiasis perfectly reflects the technological and socio-economical environment wherein it is conducted. After the discovery of African trypanosomes causing sleeping sickness and nagana in the early twentieth century, refinement of clinical diagnosis was soon followed by the development of improved parasitological methods. Later, serological and molecular diagnostics appeared but hardly found their way to the non-academic end user with one exception, a direct agglutination test for gambiense sleeping sickness. Only in the last decade, African trypanosomiases were freed from their status of neglected tropical diseases and received much more attention from public and private financial donors and from researchers. This evolution has led to major breakthroughs in diagnostics development that may have a huge impact on control of human and animal African trypanosomiases.

Keywords

Rapid Diagnostic Test Molecular Diagnostics Human African Trypanosomiasis Complement Fixation Test Stage Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmed HA, Macleod ET, Hide G et al (2011) The best practice for preparation of samples from FTA cards for diagnosis of blood borne infections using African trypanosomes as a model system. Parasit Vectors 4:e68CrossRefGoogle Scholar
  2. Amin DN, Rottenberg ME, Thomson AR et al (2009) Expression and role of CXCL10 during the encephalitic stage of experimental and clinical African trypanosomiasis. J Infect Dis 200:1556–1565PubMedCrossRefGoogle Scholar
  3. Apted FIC (1970) Clinical manifestations and diagnosis of sleeping sickness. In: Mulligan HW (ed) The African trypanosomiases. George Allen and Unwin, London, pp 661–683Google Scholar
  4. Assoku RKG, Gardiner PR (1989) Detection of antibodies to platelets and erythrocytes during infection with haemorrhage-causing Trypanosoma vivax in Ayrshire cattle. Vet Parasitol 31:199–216PubMedCrossRefGoogle Scholar
  5. Bailey JW, Smith DH (1992) The use of the acridine orange QBC technique in the diagnosis of African trypanosomiasis. Trans R Soc Trop Med Hyg 86:630PubMedCrossRefGoogle Scholar
  6. Bailey NM, Cunningham MP, Kimber CD (1967) The indirect fluorescent antibody technique applied to dried blood, for use as a screening test in the diagnosis of human trypanosomiasis in Africa. Trans R Soc Trop Med Hyg 61:696–700PubMedCrossRefGoogle Scholar
  7. Bajyana Songa E, Hamers R (1988) A card agglutination test (CATT) for veterinary use based on an early VAT RoTat 1/2 of Trypanosoma evansi. Ann Soc Belg Med Trop 68:233–240PubMedGoogle Scholar
  8. Balozet L (1946) La réaction de déviation du complément après le traitement de la dourine par la méthode de Ciuca. Bull Acad Vét 19:240–241Google Scholar
  9. Basiye FL, Schoone GJ, Beld M et al (2011) Comparison of short-term and long-term protocols for stabilization and preservation of RNA and DNA of Leishmania, Trypanosoma, and Plasmodium. Diagn Microbiol Infect Dis 69:66–73PubMedCrossRefGoogle Scholar
  10. Becker S, Franco JR, Simarro PP et al (2004) Real-time PCR for detection of Trypanosoma brucei in human blood samples. Diagn Microbiol Infect Dis 50:193–199PubMedCrossRefGoogle Scholar
  11. Bieler S, Matovu E, Mitashi P et al (2012) Improved detection of Trypanosoma brucei by lysis of red blood cells, concentration and LED fluorescence microscopy. Acta Trop 121:135–140PubMedCrossRefGoogle Scholar
  12. Binz G (1972) An evaluation of the capillary and latex aggluntination and heterophile antibody tests for the detection of Trypanosoma rhodesiense infections. Bull World Health Organ 47:773–778PubMedGoogle Scholar
  13. Bisser S, Ayed Z, Bouteille B et al (2000) Central nervous system involvement in African trypanosomiasis: presence of anti-galactocerebroside antibodies in patients’ cerebrospinal fluid. Trans R Soc Trop Med Hyg 94:225–226PubMedCrossRefGoogle Scholar
  14. Bisser S, Lejon V, Preux PM et al (2002) Blood-cerebrospinal fluid barrier and intrathecal immunoglobulins compared to field diagnosis of central nervous system involvement in sleeping sickness. J Neurol Sci 193:127–135PubMedCrossRefGoogle Scholar
  15. Bossard G, Boulange A, Holzmuller P et al (2010) Serodiagnosis of bovine trypanosomosis based on HSP70/BiP inhibition ELISA. Vet Parasitol 173:39–47PubMedCrossRefGoogle Scholar
  16. Boulangé AF, Khamadi SA, Pillay D et al (2011) Production of congopaiin, the major cysteine protease of Trypanosoma (Nannomonas) congolense, in Pichia pastoris reveals unexpected dimerisation at physiological pH. Protein Express Purif 75:95–103CrossRefGoogle Scholar
  17. Brady JF (1995) Interpretation of immunoassay data. Immunoanalysis of agrochemicals. Ciba Crop Protection, Greensboro, pp 266–287CrossRefGoogle Scholar
  18. Bromidge T, Gibson W, Hudson K et al (1993) Identification of Trypanosoma brucei gambiense by PCR amplification of variant surface glycoprotein genes. Acta Trop 53:107–119PubMedCrossRefGoogle Scholar
  19. Buguet A, Bisser S, Josenando T et al (2005) Sleep structure: a new diagnostic tool for stage determination in sleeping sickness. Acta Trop 93:107–117PubMedCrossRefGoogle Scholar
  20. Bukachi SA, Wandibba S, Nyamongo IK (2009) The treatment pathways followed by cases of human African trypanosomiasis in western Kenya and eastern Uganda. Ann Trop Med Parasitol 103:211–220PubMedCrossRefGoogle Scholar
  21. Büscher P (2001) Diagnosis of human and animal African trypanosomiasis. In: Black SJ, Seed JR (eds) The African trypanosomes. Kluwer, Boston, pp 51–63Google Scholar
  22. Büscher P, Lejon V (2004) Diagnosis of human African trypanosomiasis. In: Maudlin I, Holmes P, Miles MA (eds) The trypanosomiases. CABI, Oxfordshire, pp 203–218CrossRefGoogle Scholar
  23. Büscher P, Lejon V, Magnus E et al (1999) Improved latex agglutination test for detection of antibodies in serum and cerebrospinal fluid of Trypanosoma brucei gambiense infected patients. Acta Trop 73:11–20PubMedCrossRefGoogle Scholar
  24. Büscher P, Mumba Ngoyi D, Kaboré J et al (2009) Improved models of mini anion exchange centrifugation technique (mAECT) and modified single centrifugation (MSC) for sleeping sickness diagnosis and staging. PLoS Negl Trop Dis 3:e471PubMedCrossRefGoogle Scholar
  25. Büscher P, Mumba Ngoyi D, Balharbi F, Kande Betu V, Van der Veken W, Sese C, Lejon V (2011) Improved parasitological and molecular techniques for the diagnosis and surveillance of sleeping sicknes. In: Abstracts of the 31st meeting of the international scientific council for trypanosomiasis research and control, Bamako, Mali, 12–16 Sept 2011Google Scholar
  26. Büscher P, Gilleman Q, Lejon V (2013) Novel rapid diagnostic tests for sleeping sickness. N Engl J Med 368:1069–1070PubMedCrossRefGoogle Scholar
  27. Calistri P, Narcisi V, Atzeni M et al (2013) Dourine reemergence in Italy. J Eq Vet Sci 33:83–89CrossRefGoogle Scholar
  28. Camara M, Camara O, Ilboudo H et al (2010) Sleeping sickness diagnosis: use of buffy coats improves the sensitivity of the mini anion exchange centrifugation test. Trop Med Int Health 15:796–799PubMedCrossRefGoogle Scholar
  29. Carducci C, Ellul L, Antonozzi I et al (1992) DNA elution and amplification by polymerase chain reaction from dried blood spots. Biotechniques 13:735–737PubMedGoogle Scholar
  30. Chatel G, Gulletta M, Matteelli A et al (1999) Diagnosis of tick-borne relapsing fever by the quantitative buffy coat fluorescence method. Am J Trop Med Hyg 60:738–739PubMedGoogle Scholar
  31. Claes F, Radwanska M, Urakawa T et al (2004) Variable surface glycoprotein RoTat 1.2 PCR as a specific diagnostic tool for the detection of Trypanosoma evansi infections. Kinetoplastid Biol Dis 3:1–6CrossRefGoogle Scholar
  32. Cortez AP, Rodrigues AC, Garcia HA et al (2009) Cathepsin L-like genes of Trypanosoma vivax from Africa and South America–characterization, relationships and diagnostic implications. Mol Cell Probes 23:44–51PubMedCrossRefGoogle Scholar
  33. Pereira de Almeida PJL (1999) Contributions to the diagnostic evaluation of the Polymerase Chain Reaction for the detection of Salivarian trypanosomes. PhD Thesis, Université Libre de Bruxelles, Brussels, BelgiumGoogle Scholar
  34. de Clare Bronsvoort BM, von Wissmann B, Fèvre EM et al (2010) No gold standard estimation of the sensitivity and specificity of two molecular diagnostic protocols for Trypanosoma brucei spp. in Western Kenya. PLoS One 5:e8628PubMedCrossRefGoogle Scholar
  35. Deborggraeve S, Büscher P (2010) Molecular diagnostics for sleeping sickness: where’s the benefit for the patient? Lancet Infect Dis 10:433–439PubMedCrossRefGoogle Scholar
  36. Deborggraeve S, Büscher P (2012) Recent progress in molecular diagnosis of sleeping sickness. Expert Rev Mol Diagn 12:719–730PubMedCrossRefGoogle Scholar
  37. Deborggraeve S, Claes F, Laurent T et al (2006) Molecular dipstick test for diagnosis of sleeping sickness. J Clin Microbiol 44:2884–2889PubMedCrossRefGoogle Scholar
  38. Deborggraeve S, Koffi M, Jamonneau V et al (2008) Molecular analysis of archived blood slides reveals an atypical human Trypanosoma infection. Diagn Microbiol Infect Dis 61:428–433PubMedCrossRefGoogle Scholar
  39. Deborggraeve S, Lejon V, Ali Ekangu R et al (2011a) Diagnostic accuracy of PCR in gambiense sleeping sickness diagnosis, staging and post-treatment follow-up: a 2-year longitudinal study. PLoS Negl Trop Dis 5:e972PubMedCrossRefGoogle Scholar
  40. Deborggraeve S, Lejon V, Ali Ekangu R et al (2011b) How reliable is PCR for diagnosis, staging and follow-up of gambiense sleeping sickness? Trop Med Int Health 16(S1):168Google Scholar
  41. Desquesnes M, McLaughlin G, Zoungrana A et al (2001) Detection and identification of Trypanosoma of African livestock through a single PCR based on internal transcribed spacer 1 of rDNA. Int J Parasitol 31:610–614PubMedCrossRefGoogle Scholar
  42. Desquesnes M, Bosseno M-F, Brenière SF (2007) Detection of Chagas infections using Trypanosoma evansi crude antigen demonstrates high cross-reactions with Trypanosoma cruzi. Infect Genet Evol 7:457–462PubMedCrossRefGoogle Scholar
  43. Desquesnes M, Kamyingkird K, Yangtara S et al (2011) Specific primers for PCR amplification of the ITS1 (ribosomal DNA) of Trypanosoma lewisi. Infect Genet Evol 11:1361–1367PubMedCrossRefGoogle Scholar
  44. Duffy T, Cura CI, Ramirez JC et al (2013) Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl Trop Dis 7:e2000PubMedCrossRefGoogle Scholar
  45. Ebeja AK (2012) Journée Scientifique THA à Kinshasa. Bull HAT Platform 12:9–10Google Scholar
  46. Enøe C, Georgiadis MP, Johnson WO (2000) Estimation of sensitivity and specificity of diagnostic tests and disease prevalence when the true disease state is unknown. Prev Vet Med 45:61–81PubMedCrossRefGoogle Scholar
  47. Fikru R, Goddeeris BM, Delespaux V et al (2012) Widespread occurrence of Trypanosoma vivax in bovines of tsetse- as well as non-tsetse-infested regions of Ethiopia: a reason for concern? Vet Parasitol 190:355–361PubMedCrossRefGoogle Scholar
  48. Geysen D, Delespaux V, Geerts S (2003) PCR-RFLP using Ssu-rDNA amplification as an easy method for species-specific diagnosis of Trypanosoma species in cattle. Vet Parasitol 110:171–180PubMedCrossRefGoogle Scholar
  49. Giroud C, Ottones F, Coustou V et al (2009) Murine models for Trypanosoma brucei gambiense disease progression-from silent to chronic infections and early brain tropism. PLoS Negl Trop Dis 3:e509PubMedCrossRefGoogle Scholar
  50. Gutierrez C, Corbera JA, Doreste F et al (2004) Use of the miniature anion exchange centrifugation technique to isolate Trypanosoma evansi from goats. Ann N Y Acad Sci 1026:149–151PubMedCrossRefGoogle Scholar
  51. Hainard A, Tiberti N, Robin X et al (2009) A combined CXCL10, CXCL8 and H-FABP panel for the staging of human African trypanosomiasis patients. PLoS Negl Trop Dis 3:e459PubMedCrossRefGoogle Scholar
  52. Hasker E, Lumbala C, Mbo F et al (2011) Health care-seeking behaviour and diagnostic delays for Human African Trypanosomiasis in the Democratic Republic of the Congo. Trop Med Int Health 16:869–874PubMedCrossRefGoogle Scholar
  53. Herwaldt BL (2001) Laboratory-acquired parasitic infections from accidental exposures. Clin Microbiol Rev 14:659–688PubMedCrossRefGoogle Scholar
  54. Holland WG, Claes F, My LN et al (2001) A comparative evaluation of parasitological tests and a PCR for Trypanosoma evansi diagnosis in experimentally infected water buffaloes. Vet Parasitol 97:23–33PubMedCrossRefGoogle Scholar
  55. Holland WG, Thanh NG, My LN et al (2002) Evaluation of whole fresh blood and dried blood on filter paper discs in serological tests for Trypanosoma evansi in experimentally infected water buffaloes. Acta Trop 81:159–165PubMedCrossRefGoogle Scholar
  56. Imboden M, Müller N, Hemphill A et al (1995) Repetitive proteins from the flagellar cytoskeleton of African trypanosomes are diagnostically useful antigens. Parasitology 110:249–258PubMedCrossRefGoogle Scholar
  57. Jamonneau V, Solano P, Garcia A et al (2007) Application of PCR/CSF for stage determination and therapeutic decision in human African trypanosomiasis in Cöte d’Ivoire. In: Crowther JR (ed) Developing methodologies for the use of polymerase chain reaction in the diagnosis and monitoring of trypanosomosis. International Atomic Energy Agency, Vienna, pp 27–35Google Scholar
  58. Jamonneau V, Bucheton B, Kabore J et al (2010) Revisiting the immune trypanolysis test to optimise epidemiological surveillance and control of sleeping sickness in west Africa. PLoS Negl Trop Dis 4:e917PubMedCrossRefGoogle Scholar
  59. Joseph L, Gyorkos TW, Coupal L (1995) Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol 141:263–272PubMedGoogle Scholar
  60. Kabiri M, Franco JR, Simarro PP et al (1999) Detection of Trypanosoma brucei gambiense in sleeping sickness suspects by PCR amplification of expression-site-associated genes 6 and 7. Trop Med Int Health 4:658–661PubMedCrossRefGoogle Scholar
  61. Kashiwazaki Y, Snowden K, Smith DH et al (1994) A multiple antigen detection dipstick colloidal dye immunoassay for the field diagnosis of trypanosome infections in cattle. Vet Parasitol 55:57–69PubMedCrossRefGoogle Scholar
  62. Kirchhoff LV (1998) Use of a PCR assay for diagnosing African trypanosomiasis of the CNS: a case report. Cent Afr J Med 44:134–136PubMedGoogle Scholar
  63. Kjeldsberg CR, Knight JA (1993) Cerebrospinal fluid. In: Johnson KD (ed) Body fluids. American Society of Clinical Pathologists (ASCP), Chicago, IL, pp 65–157Google Scholar
  64. Kocher TD, Thomas WK, Meyer A et al (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200PubMedCrossRefGoogle Scholar
  65. Kuboki N, Inoue N, Sakurai T et al (2003) Loop-mediated isothermal amplification for detection of African trypanosomes. J Clin Microbiol 41:5517–5524PubMedCrossRefGoogle Scholar
  66. Kuhn W, Armstrong D, Atteberry S et al (2010) Usefulness of the paralens fluorescent microscope adaptor for the identification of mycobacteria in both field and laboratory settings. Open Microbiol J 4:30–33PubMedCrossRefGoogle Scholar
  67. Kyambadde JW, Enyaru JCK, Matovu E et al (2000) Detection of trypanosomes in suspected sleeping sickness patients in Uganda using the polymerase chain reaction. Bull World Health Organ 78:119–124PubMedGoogle Scholar
  68. Lanham SM, Godfrey DG (1970) Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol 28:521–534PubMedCrossRefGoogle Scholar
  69. Lejon V, Büscher P (2002) Sleeping sickness: from intrathecal IgM synthesis to card agglutination. Acta Trop 83:S70Google Scholar
  70. Lejon V, Büscher P (2005) Cerebrospinal fluid in human African trypanosomiasis: a key to diagnosis, therapeutic decision and post-treatment follow-up. Trop Med Int Health 10:395–403PubMedCrossRefGoogle Scholar
  71. Lejon V, Moons A, Büscher P, et al (1997) Trypanosome specific antibody profile in serum and cerebrospinal fluid of T.b. gambiense patients. In: Ndung’u JM (ed) Twenty-third meeting of the international scientific council for trypanosomiasis research and control (ISCTRC), Banjul, The Gambia, 11–15 Sept 1995. OAU/STRC, Nairobi, pp 78–91Google Scholar
  72. Lejon V, Büscher P, Magnus E et al (1998) A semi-quantitative ELISA for detection of Trypanosoma brucei gambiense specific antibodies in serum and cerebrospinal fluid of sleeping sickness patients. Acta Trop 69:151–164PubMedCrossRefGoogle Scholar
  73. Lejon V, Rosengren LE, Büscher P et al (1999) Detection of light subunit neurofilament and glial fibrillary acidic protein in cerebrospinal fluid of Trypanosoma brucei gambiense -infected patients. Am J Trop Med Hyg 60:94–98PubMedGoogle Scholar
  74. Lejon V, Lardon J, Kenis G et al (2002) Interleukin-6, IL-8 and IL-10 in serum and CSF of T.b. gambiense sleeping sickness patients before and after treatment. Trans R Soc Trop Med Hyg 96:329–333PubMedCrossRefGoogle Scholar
  75. Lejon V, Ameel V, Brandt J, Van den Bossche P, Büscher P (2003a) Development of a direct immunofluorescence test (DIFAT) for parasitological diagnosis of African trypanosomiasis. In: Abstracts of the 27th meeting of the international scientific council for trypanosomiasis research and control (ISCTRC), Nairobi, Kenya, Sept 2003Google Scholar
  76. Lejon V, Boelaert M, Jannin J et al (2003b) The challenge of Trypanosoma brucei gambiense sleeping sickness diagnosis outside Africa. Lancet Infect Dis 3:804–808PubMedCrossRefGoogle Scholar
  77. Lejon V, Legros D, Savignoni A et al (2003c) Neuro-inflammatory risk factors for treatment failure in “early second stage” sleeping sickness patients treated with Pentamidine. J Neuroimmunol 144:132–138PubMedCrossRefGoogle Scholar
  78. Lejon V, Rebeski DE, Ndao M et al (2003d) Performance of enzyme-linked immunosorbent assays for detection of antibodies against T. congolense and T. vivax in goats. Vet Parasitol 116:87–95PubMedCrossRefGoogle Scholar
  79. Lejon V, Reiber H, Legros D et al (2003e) Intrathecal immune response pattern for improved diagnosis of central nervous system involvement in trypanosomiasis. J Infect Dis 187:1475–1483PubMedCrossRefGoogle Scholar
  80. Lejon V, Claes F, Verloo D et al (2005) Recombinant RoTat 1.2 variable surface glycoprotein for diagnosis of Trypanosoma evansi in dromedary camel. Int J Parasitol 35:455–460PubMedCrossRefGoogle Scholar
  81. Lejon V, Jamonneau V, Solano P et al (2006) Detection of trypanosome-specific antibodies in saliva, towards non-invasive serological diagnosis of sleeping sickness. Trop Med Int Health 11:620–627PubMedCrossRefGoogle Scholar
  82. Levine RA, Wardlaw SC, Patton CL (1989) Detection of haemoparasites using quantitative buffy coat analysis tubes. Parasitol Today 5:132–134PubMedCrossRefGoogle Scholar
  83. Liu MK, Pearson TW (1987) Detection of circulating trypanosomal antigens by double antibody ELISA using antibodies to procyclic trypanosomes. Parasitology 95:277–290PubMedCrossRefGoogle Scholar
  84. Lorger M, Engstler M, Homann M et al (2003) Targeting the variable surface of African trypanosomes with variant surface glycoprotein-specific, serum-stable RNA aptamers. Eukaryot Cell 2:84–94PubMedCrossRefGoogle Scholar
  85. Luckins AG, Mehlitz D (1978) Evaluation of an indirect fluorescent antibody test, enzyme-linked immunosorbent assay and quantification of immunoglobulins in the diagnosis of bovine trypanosomiasis. Trop Anim Health Prod 10:149–159PubMedCrossRefGoogle Scholar
  86. Lumsden WHR, Kimber CD, Evans DA et al (1979) Trypanosoma brucei: miniature anion-exchange centrifugation technique for detection of low parasitaemias: adaptation for field use. Trans R Soc Trop Med Hyg 73:312–317PubMedCrossRefGoogle Scholar
  87. MacLean L, Odiit M, Okitoi D et al (1999) Plasma nitrate and interferron-gamma in Trypanosoma brucei rhodesiense infections: evidence that nitric oxide production is induced during both early blood-stage and late meningoencephalitic-stage infections. Trans R Soc Trop Med Hyg 93:169–170PubMedCrossRefGoogle Scholar
  88. Magnus E, Vervoort T, Van Meirvenne N (1978) A card-agglutination test with stained trypanosomes (C.A.T.T.) for the serological diagnosis of T.b.gambiense trypanosomiasis. Ann Soc Belg Med Trop 58:169–176PubMedGoogle Scholar
  89. Matovu E, Kuepfer I, Boobo A et al (2010a) Comparative detection of trypanosomal DNA by loop-mediated isothermal amplification and PCR from flinders technology associates cards spotted with patient blood. J Clin Microbiol 48:2087–2090PubMedCrossRefGoogle Scholar
  90. Matovu E, Mugasa CM, Ali Ekangu R et al (2010b) Phase II evaluation of sensitivity and specificity of PCR and NASBA followed by oligochromatography for diagnosis of human African trypanosomiasis in D.R. Congo and Uganda. PLoS Negl Trop Dis 4:e737PubMedCrossRefGoogle Scholar
  91. Mendoza-Palomares C, Biteau N, Giroud C et al (2008) Molecular and biochemical characterization of a cathepsin B-like protease family unique to Trypanosoma congolense. Eukaryot Cell 7:684–697PubMedCrossRefGoogle Scholar
  92. Miézan TW, Meda AH, Doua F et al (2000) Single centrifugation of cerebrospinal fluid in a sealed pasteur pipette for simple, rapid and sensitive detection of trypanosomes. Trans R Soc Trop Med Hyg 94:293PubMedCrossRefGoogle Scholar
  93. Mori Y, Nagamine K, Tomita N et al (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289:150–154PubMedCrossRefGoogle Scholar
  94. Moser DR, Cook GA, Ochs DE et al (1989) Detection of Trypanosoma congolense and Trypanosoma brucei subspecies by DNA amplification using the polymerase chain reaction. Parasitology 99:57–66PubMedCrossRefGoogle Scholar
  95. Mpandzou G, Cespuglio R, Ngampo S et al (2011) Polysomnography as a diagnosis and post-treatment follow-up tool in human African trypanosomiasis: a case study in an infant. J Neurol Sci 305:112–115PubMedCrossRefGoogle Scholar
  96. Mugasa CM, Schoone GJ, Ekangu RA et al (2008) Detection of Trypanosoma brucei parasites in blood samples using real-time nucleic acid sequence-based amplification. Diagn Microbiol Infect Dis 61:440–445PubMedCrossRefGoogle Scholar
  97. Mugasa CM, Laurent T, Schoone GJ et al (2009) Nucleic acid sequence-based amplification with oligochromatography for detection of Trypanosoma brucei in clinical samples. J Clin Microbiol 47:630–635PubMedCrossRefGoogle Scholar
  98. Mugasa CM, Adams ER, Boer KR et al (2012) Diagnostic accuracy of molecular amplification tests for human African trypanosomiasis-systematic review. PLoS Negl Trop Dis 6:e1438PubMedCrossRefGoogle Scholar
  99. Müller N, Hemphill A, Imboden M et al (1992) Identification and characterization of two repetitive non-variable antigens from African trypanosomes which are recognized early during infection. Parasitology 104:111–120PubMedCrossRefGoogle Scholar
  100. Mumba Ngoyi D, Lejon V, N’Siesi FX et al (2009) Comparison of operational criteria for treatment outcome in gambiense human African trypanosomiasis. Trop Med Int Health 14:438–444PubMedCrossRefGoogle Scholar
  101. Mumba Ngoyi D, Lejon V, Pyana P et al (2010) How to shorten patient follow-up after treatment for Trypanosoma brucei gambiense sleeping sickness? J Infect Dis 201:453–463PubMedCrossRefGoogle Scholar
  102. Mumba Ngoyi D, Bohorquez E, Messina J et al (2011) Prevalence of human African trypanosomiasis in the Democratic Republic of the Congo. PLoS Negl Trop Dis 5:e1246CrossRefGoogle Scholar
  103. Mumba Ngoyi D, Menten J, Pyana PP et al (2013) Stage determination in sleeping sickness: comparison of two cell counting and two parasite detection techniques. Trop Med Int Health 18(6):778–782PubMedCrossRefGoogle Scholar
  104. Murray M, Murray PK, McIntyre WIM (1977) An improved parasitological technique for the diagnosis of African trypanosomiasis. Trans R Soc Trop Med Hyg 71:325–326PubMedCrossRefGoogle Scholar
  105. Namangala B, Hachaambwa L, Kajino K et al (2012) The use of Loop-mediated Isothermal Amplification (LAMP) to detect the re-emerging Human African Trypanosomiasis (HAT) in the Luangwa and Zambezi valleys. Parasit Vectors 5:e282CrossRefGoogle Scholar
  106. Nantulya VM, Lindqvist KJ (1989) Antigen-detection enzyme immunoassays for the diagnosis of Trypanosoma vivax, T. congolense and T. brucei infections in cattle. Trop Med Parasitol 40:267–272PubMedGoogle Scholar
  107. Ngaira JM, Olembo NK, Njagi ENM et al (2005) The detection of non-RoTat 1.2 Trypanosoma evansi. Exp Parasitol 110:30–38PubMedCrossRefGoogle Scholar
  108. Njamnshi AK, Seke Etet PF, Perrig S et al (2012) Actigraphy in human African trypanosomiasis as a tool for objective clinical evaluation and monitoring: a pilot study. PLoS Negl Trop Dis 6:e1525PubMedCrossRefGoogle Scholar
  109. Njiru ZK (2011) Rapid and sensitive detection of human African trypanosomiasis by loop-mediated isothermal amplification combined with a lateral-flow dipstick. Diagn Microbiol Infect Dis 69:205–209PubMedCrossRefGoogle Scholar
  110. Njiru ZK (2012) Loop-mediated isothermal amplification technology: towards point of care diagnostics. PLoS Negl Trop Dis 6:e1572PubMedCrossRefGoogle Scholar
  111. Njiru ZK, Ndung’u K, Matete G et al (2004) Detection of Trypanosoma brucei rhodesiense in animals from sleeping sickness foci in East Africa using the serum resistance (SRA) gene. Acta Trop 90:249–254PubMedCrossRefGoogle Scholar
  112. Njiru ZK, Constantine CC, Guya S et al (2005) The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol Res 95:186–192PubMedCrossRefGoogle Scholar
  113. Njiru ZK, Mikosza ASJ, Armstrong T et al (2008a) Loop-mediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis 2:e147PubMedCrossRefGoogle Scholar
  114. Njiru ZK, Mikosza ASJ, Matovu E et al (2008b) African trypanosomiasis: Sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA. Int J Parasitol 38:589–599PubMedCrossRefGoogle Scholar
  115. Njiru ZK, Traub R, Ouma JO et al (2011) Detection of group 1 Trypanosoma brucei gambiense by Loop-Mediated Isothermal Amplification. J Clin Microbiol 49:1530–1536PubMedCrossRefGoogle Scholar
  116. Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:7–9CrossRefGoogle Scholar
  117. OIE (2012) Manual of diagnostic tests and vaccines for terrestrial animals. http://www.oie.int/manual-of-diagnostic-tests-and-vaccines-for-terrestrial-animals/
  118. Olaho-Mukani W, Munyua WK, Mutugi MW et al (1993) Comparison of antibody- and antigen-detection enzyme immunoassays for the diagnosis of Trypanosoma evansi infections in camels. Vet Parasitol 45:231–240PubMedCrossRefGoogle Scholar
  119. Pascucci I, Di Provvido A, Camara C et al (2013) Diagnosis of dourine outbreaks in Italy. Vet Parasitol 193:30–38PubMedCrossRefGoogle Scholar
  120. Peeling RW, Holmes KK, Mabey D et al (2006) Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Dis 82(Suppl V):v1–v6Google Scholar
  121. Pentreath VW, Owolabi AO, Doua F (1992) Survival of Trypanosoma brucei brucei in cerebrospinal fluid. Ann Trop Med Parasitol 86:29–34PubMedGoogle Scholar
  122. Pereira de Almeida PJL, Ndao M, Van Meirvenne N et al (1998) Diagnostic evaluation of PCR on dried blood samples from goats experimentally infected with Trypanosoma brucei brucei. Acta Trop 70:269–276CrossRefGoogle Scholar
  123. Picozzi K, Carrington M, Welburn SC (2008) A multiplex PCR that discriminates between Trypanosoma brucei brucei and zoonotic T. b. rhodesiense. Exp Parasitol 118:41–46PubMedCrossRefGoogle Scholar
  124. Priotto G, Chappuis F, Bastard M et al (2012) Early prediction of treatment efficacy in second-stage gambiense human African trypanosomiasis. PLoS Negl Trop Dis 6:e1662PubMedCrossRefGoogle Scholar
  125. Radwanska M, Chamekh M, Vanhamme L et al (2002a) The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. Am J Trop Med Hyg 67:684–690PubMedGoogle Scholar
  126. Radwanska M, Claes F, Magez S et al (2002b) Novel primer sequences for a polymerase chain reaction-based detection of Trypanosoma brucei gambiense. Am J Trop Med Hyg 67:289–295PubMedGoogle Scholar
  127. Radwanska M, Magez S, Perry-O’Keefe H et al (2002c) Direct detection and identification of African trypanosomes by fluorescence in situ hybridization using peptide nucleic acid probes. J Clin Microbiol 40:4295–4297PubMedCrossRefGoogle Scholar
  128. Rae PF, Luckins AG (1984) Detection of circulating trypanosomal antigens by enzyme immunoassay. Ann Trop Med Parasitol 78:587–596PubMedGoogle Scholar
  129. Rebeski DE, Winger EM, Rogovic B et al (1999) Improved methods for the diagnosis of African trypanosomosis. Mem Inst Oswaldo Cruz 94:249–253PubMedCrossRefGoogle Scholar
  130. Rebeski DE, Winger EM, Okoro H et al (2000) Detection of Trypanosoma congolense with indirect ELISAs using antigen-precoated microtitre plates. Vet Parasitol 89:187–198PubMedCrossRefGoogle Scholar
  131. Rebeski DE, Winger EM, Ouma JO et al (2001) Charting methods to monitor the operational performance of ELISA method for the detection of antibodies against trypanosomes. Vet Parasitol 96:11–50PubMedCrossRefGoogle Scholar
  132. Rogé S, Heykers A, Brouwer de Koning A, Guisez Y, Büscher P (2011a) Recombinant expression of LiTat 1.3 VSG in Pichia pastoris for serodiagnosis of gambiense sleeping sickness. In: Abstracts of the 31st meeting of the international scientific council for trypanosomiasis research and control, Bamako, Mali, 12–16 Sept 2011Google Scholar
  133. Rogé S, Van Reet N, Wand N, Guisez Y, Rudenko G, Büscher P (2011b) Immune trypanolysis on non-human infective trypanosomes for diagnosis of gambiense sleeping sickness. In: Abstracts of the 31st meeting of the international scientific council for trypanosomiasis research and control, Bamako, Mali, 12–16 Sept 2011Google Scholar
  134. Rogé S, Guisez Y, Büscher P (2012a) A new latex agglutination test for surra based on recombinant Trypanosoma evansi RoTat 1.2 variant surface glycoprotein expressed in the Pichia pastoris GlycoSwitch™ M5 strain. In: Abstracts of the Pichia 2012, Alpbach, Austria, 29 Feb–3 Mar 2012Google Scholar
  135. Rogé S, Meul M, Guisez Y, Gilleman Q, Simon T, Büscher P (2012b) Development of rapid diagnostic tests for surra and sleeping sickness based on recombinant antigens expressed in Pichia pastoris. In: Abstracts of the Pathogens’ survival strategies, from fundamentals to field. ITM 54th international colloquium, Antwerp, Belgium, 3–5 Dec 2012Google Scholar
  136. Rogé S, Van Reet N, Odiwuor SO, Schildermans K, Vandamme S, Vandenberghe I, Vervecken W, Gillingwater K, Claes F, Devreese B, Guisez Y, Büscher P (2012c) Recombinant expression of trypanosome surface glycoproteins in Pichia pastoris for the diagnosis of Trypanosoma evansi infection. In: Abstracts of the Pathogens’ survival strategies, from fundamentals to field. ITM 54th international colloquium, Antwerp, Belgium, 3–5 Dec 2012Google Scholar
  137. Rogé S, Van Reet N, Odiwuor S, Tran T, Schildermans K, Vandamme S, Vandenberghe I, Vervecken W, Gillingwater K, Claes F, Devreese B, Guisez Y, Büscher P (2013) Recombinant expression of trypanosome surface glycoprtoteins in Pichia pastoris for the diagnosis of Trypanosoma evansi infection. Vet Parasitol. doi: 10.1016/j.vetpar.2013.05.009
  138. Rutjes AW, Reitsma JB, Coomarasamy A et al (2007) Evaluation of diagnostic tests when there is no gold standard. A review of methods. Health Technol Assess 11:iii, ix-51Google Scholar
  139. Sengupta PP, Balumahendiran M, Suryanaryana VVS et al (2010) PCR-based diagnosis of surra-targeting VSG genen: experimental studies in small laboratory rodents and buffalo. Vet Parasitol 171:22–31PubMedCrossRefGoogle Scholar
  140. Sengupta PP, Balumahendiran M, Balamurugan V et al (2013) Expressed truncated N-terminal variable surface glycoprotein (VSG) of Trypanosoma evansi in E. coli exhibits immuno-reactivity. Vet Parasitol 187:1–8CrossRefGoogle Scholar
  141. Sharma P, Juyal PD, Singla LD et al (2012) Comparative evaluation of real time PCR assay with conventional parasitological techniques for diagnosis of Trypanosoma evansi in cattle and buffaloes. Vet Parasitol 190:375–382PubMedCrossRefGoogle Scholar
  142. Shiraishi T, Deborggraeve S, Büscher P et al (2011) Sensitive detection of nucleic acids by PNA hybridization directed co-localization of fluorescent beads. Artif DNA PNA XNA 2:60–66PubMedCrossRefGoogle Scholar
  143. Sullivan L, Wall SJ, Carrington M et al (2013) Proteomic selection of immunodiagnostic antigens for human African trypanosomiasis and generation of a protoype lateral flow immunodiagnostic device. PLoS Negl Trop Dis 7:e2087PubMedCrossRefGoogle Scholar
  144. Thekisoe OMM, Kuboki N, Nambota A et al (2007) Species-specific loop-mediated isothermal amplification (LAMP) for diagnosis of trypanosomosis. Acta Trop 102:182–189PubMedCrossRefGoogle Scholar
  145. Thuy NT, Goto Y, Lun ZR et al (2012) Tandem repeat protein as potential diagnostic antigen for Trypanosoma evansi infection. Parasitol Res 110:733–739PubMedCrossRefGoogle Scholar
  146. Tiberti N, Hainard A, Lejon V et al (2013a) Cerebrospinal fluid neopterin is a marker of the meningo-encephalitic stage of Trypanosoma brucei gambiense sleeping sickness. PLoS One 7:e40909CrossRefGoogle Scholar
  147. Tiberti N, Lejon V, Hainard A et al (2013b) Neopterin is a cerebrospinal fluid marker for treatment outcome evaluation in patients affected by Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis 7:e2088PubMedCrossRefGoogle Scholar
  148. Tomita N, Mori Y, Kanda H et al (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882PubMedCrossRefGoogle Scholar
  149. Tran T, Claes F, Verloo D et al (2009) Towards a new reference test for surra in camels. Clin Vaccine Immunol 16:999–1002PubMedCrossRefGoogle Scholar
  150. Truc P, Jamonneau V, Cuny G et al (1999) Use of polymerase chain reaction in human African trypanosomiasis stage determination and follow-up. Bull World Health Organ 77:745–748PubMedGoogle Scholar
  151. Truc P, Lando A, Penchenier L et al (2012) Human African trypanosomiasis in Angola: clinical observations, treatment, and use of PCR for stage determination of early stage of the disease. Trans R Soc Trop Med Hyg 106:10–14PubMedCrossRefGoogle Scholar
  152. Van Meirvenne N, Magnus E, Büscher P (1995) Evaluation of variant specific trypanolysis tests for serodiagnosis of human infections with Trypanosoma brucei gambiense. Acta Trop 60:189–199PubMedCrossRefGoogle Scholar
  153. Van Nieuwenhove L, Rogé S, Balharbi F et al (2011) Identification of peptide mimotopes of Trypanosoma brucei gambiense variant surface glycoproteins. PLoS Negl Trop Dis 5:e1189PubMedCrossRefGoogle Scholar
  154. Van Nieuwenhove L, Büscher P, Balharbi F et al (2012) Identification of mimotopes with diagnostic potential for Trypanosoma brucei gambiense variant surface glycoproteins with human antibody fractions. PLoS Negl Trop Dis 6:e1682PubMedCrossRefGoogle Scholar
  155. Van Nieuwenhove L, Büscher P, Balharbi F et al (2013) A LiTat 1.5 variant surface glycoprotein-derived peptide with diagnostic potential for Trypanosoma brucei gambiense. Trop Med Int Health 18:461–465PubMedCrossRefGoogle Scholar
  156. Verloo D, Tibayrenc R, Magnus E et al (1998) Performance of serological tests for Trypanosoma evansi infections in camels from Niger. J Protozool Res 8:190–193Google Scholar
  157. Verma A, Manchanda S, Kumar N et al (2011) Trypanosoma lewisi or T. lewisi-like infection in a 37-day-old Indian infant. Am J Trop Med Hyg 85:221–224PubMedCrossRefGoogle Scholar
  158. Vitouley HS, Mungube EO, Allegye-Cudjoe E et al (2011) Improved PCR-RFLP for the detection of diminazene resistance in Trypanosoma congolense under field conditions using filter papers for sample storage. PLoS Negl Trop Dis 5:e1223PubMedCrossRefGoogle Scholar
  159. Wastling SL, Picozzi K, Kakembo AS et al (2010) LAMP for human African trypanosomiasis: a comparative study of detection formats. PLoS Negl Trop Dis 4:e865PubMedCrossRefGoogle Scholar
  160. Welburn SC, Picozzi K, Fèvre EM et al (2001) Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene. Lancet 358:2017–2019PubMedCrossRefGoogle Scholar
  161. Woo PTK (1970) The haematocrit centrifuge technique for the diagnosis of African trypanosomiasis. Acta Trop 27:384–386PubMedGoogle Scholar
  162. Woo PTK, Soltys MA (1972) The indirect haemagglutination and charcoal-agglutination tests in the diagnosis of African sleeping sickness. Tropenmed Parasitol 23:324–327Google Scholar
  163. World Health Organization (1986) Epidemiology and control of African trypanosomiasis. WHO Technical Report Series 739, World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Institute of Tropical MedicineAntwerpenBelgium

Personalised recommendations