Skip to main content

Diagnosis of African Trypanosomiasis

  • Chapter
  • First Online:
Trypanosomes and Trypanosomiasis

Abstract

In African trypanosomiasis, diagnosis is complex since several diseases are caused by different parasites and occur in different host species giving rise to a variety of parasite–host relationships. At one end of the spectrum we find acute or chronic but fatal diseases, while at the other end long-lasting subclinical and almost commensal infections are observed. The result is that all diagnostic methods, whether clinical or molecular, have their limitations that will define how, where and for what particular trypanosomiasis they will eventually be applied, alone or in combination. Research on diagnosis of African trypanosomiasis perfectly reflects the technological and socio-economical environment wherein it is conducted. After the discovery of African trypanosomes causing sleeping sickness and nagana in the early twentieth century, refinement of clinical diagnosis was soon followed by the development of improved parasitological methods. Later, serological and molecular diagnostics appeared but hardly found their way to the non-academic end user with one exception, a direct agglutination test for gambiense sleeping sickness. Only in the last decade, African trypanosomiases were freed from their status of neglected tropical diseases and received much more attention from public and private financial donors and from researchers. This evolution has led to major breakthroughs in diagnostics development that may have a huge impact on control of human and animal African trypanosomiases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed HA, Macleod ET, Hide G et al (2011) The best practice for preparation of samples from FTA cards for diagnosis of blood borne infections using African trypanosomes as a model system. Parasit Vectors 4:e68

    Article  Google Scholar 

  • Amin DN, Rottenberg ME, Thomson AR et al (2009) Expression and role of CXCL10 during the encephalitic stage of experimental and clinical African trypanosomiasis. J Infect Dis 200:1556–1565

    Article  PubMed  CAS  Google Scholar 

  • Apted FIC (1970) Clinical manifestations and diagnosis of sleeping sickness. In: Mulligan HW (ed) The African trypanosomiases. George Allen and Unwin, London, pp 661–683

    Google Scholar 

  • Assoku RKG, Gardiner PR (1989) Detection of antibodies to platelets and erythrocytes during infection with haemorrhage-causing Trypanosoma vivax in Ayrshire cattle. Vet Parasitol 31:199–216

    Article  PubMed  CAS  Google Scholar 

  • Bailey JW, Smith DH (1992) The use of the acridine orange QBC technique in the diagnosis of African trypanosomiasis. Trans R Soc Trop Med Hyg 86:630

    Article  PubMed  CAS  Google Scholar 

  • Bailey NM, Cunningham MP, Kimber CD (1967) The indirect fluorescent antibody technique applied to dried blood, for use as a screening test in the diagnosis of human trypanosomiasis in Africa. Trans R Soc Trop Med Hyg 61:696–700

    Article  PubMed  CAS  Google Scholar 

  • Bajyana Songa E, Hamers R (1988) A card agglutination test (CATT) for veterinary use based on an early VAT RoTat 1/2 of Trypanosoma evansi. Ann Soc Belg Med Trop 68:233–240

    PubMed  CAS  Google Scholar 

  • Balozet L (1946) La réaction de déviation du complément après le traitement de la dourine par la méthode de Ciuca. Bull Acad Vét 19:240–241

    CAS  Google Scholar 

  • Basiye FL, Schoone GJ, Beld M et al (2011) Comparison of short-term and long-term protocols for stabilization and preservation of RNA and DNA of Leishmania, Trypanosoma, and Plasmodium. Diagn Microbiol Infect Dis 69:66–73

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Franco JR, Simarro PP et al (2004) Real-time PCR for detection of Trypanosoma brucei in human blood samples. Diagn Microbiol Infect Dis 50:193–199

    Article  PubMed  CAS  Google Scholar 

  • Bieler S, Matovu E, Mitashi P et al (2012) Improved detection of Trypanosoma brucei by lysis of red blood cells, concentration and LED fluorescence microscopy. Acta Trop 121:135–140

    Article  PubMed  Google Scholar 

  • Binz G (1972) An evaluation of the capillary and latex aggluntination and heterophile antibody tests for the detection of Trypanosoma rhodesiense infections. Bull World Health Organ 47:773–778

    PubMed  CAS  Google Scholar 

  • Bisser S, Ayed Z, Bouteille B et al (2000) Central nervous system involvement in African trypanosomiasis: presence of anti-galactocerebroside antibodies in patients’ cerebrospinal fluid. Trans R Soc Trop Med Hyg 94:225–226

    Article  PubMed  CAS  Google Scholar 

  • Bisser S, Lejon V, Preux PM et al (2002) Blood-cerebrospinal fluid barrier and intrathecal immunoglobulins compared to field diagnosis of central nervous system involvement in sleeping sickness. J Neurol Sci 193:127–135

    Article  PubMed  CAS  Google Scholar 

  • Bossard G, Boulange A, Holzmuller P et al (2010) Serodiagnosis of bovine trypanosomosis based on HSP70/BiP inhibition ELISA. Vet Parasitol 173:39–47

    Article  PubMed  CAS  Google Scholar 

  • Boulangé AF, Khamadi SA, Pillay D et al (2011) Production of congopaiin, the major cysteine protease of Trypanosoma (Nannomonas) congolense, in Pichia pastoris reveals unexpected dimerisation at physiological pH. Protein Express Purif 75:95–103

    Article  CAS  Google Scholar 

  • Brady JF (1995) Interpretation of immunoassay data. Immunoanalysis of agrochemicals. Ciba Crop Protection, Greensboro, pp 266–287

    Book  Google Scholar 

  • Bromidge T, Gibson W, Hudson K et al (1993) Identification of Trypanosoma brucei gambiense by PCR amplification of variant surface glycoprotein genes. Acta Trop 53:107–119

    Article  PubMed  CAS  Google Scholar 

  • Buguet A, Bisser S, Josenando T et al (2005) Sleep structure: a new diagnostic tool for stage determination in sleeping sickness. Acta Trop 93:107–117

    Article  PubMed  Google Scholar 

  • Bukachi SA, Wandibba S, Nyamongo IK (2009) The treatment pathways followed by cases of human African trypanosomiasis in western Kenya and eastern Uganda. Ann Trop Med Parasitol 103:211–220

    Article  PubMed  CAS  Google Scholar 

  • Büscher P (2001) Diagnosis of human and animal African trypanosomiasis. In: Black SJ, Seed JR (eds) The African trypanosomes. Kluwer, Boston, pp 51–63

    Google Scholar 

  • Büscher P, Lejon V (2004) Diagnosis of human African trypanosomiasis. In: Maudlin I, Holmes P, Miles MA (eds) The trypanosomiases. CABI, Oxfordshire, pp 203–218

    Chapter  Google Scholar 

  • Büscher P, Lejon V, Magnus E et al (1999) Improved latex agglutination test for detection of antibodies in serum and cerebrospinal fluid of Trypanosoma brucei gambiense infected patients. Acta Trop 73:11–20

    Article  PubMed  Google Scholar 

  • Büscher P, Mumba Ngoyi D, Kaboré J et al (2009) Improved models of mini anion exchange centrifugation technique (mAECT) and modified single centrifugation (MSC) for sleeping sickness diagnosis and staging. PLoS Negl Trop Dis 3:e471

    Article  PubMed  Google Scholar 

  • Büscher P, Mumba Ngoyi D, Balharbi F, Kande Betu V, Van der Veken W, Sese C, Lejon V (2011) Improved parasitological and molecular techniques for the diagnosis and surveillance of sleeping sicknes. In: Abstracts of the 31st meeting of the international scientific council for trypanosomiasis research and control, Bamako, Mali, 12–16 Sept 2011

    Google Scholar 

  • Büscher P, Gilleman Q, Lejon V (2013) Novel rapid diagnostic tests for sleeping sickness. N Engl J Med 368:1069–1070

    Article  PubMed  CAS  Google Scholar 

  • Calistri P, Narcisi V, Atzeni M et al (2013) Dourine reemergence in Italy. J Eq Vet Sci 33:83–89

    Article  Google Scholar 

  • Camara M, Camara O, Ilboudo H et al (2010) Sleeping sickness diagnosis: use of buffy coats improves the sensitivity of the mini anion exchange centrifugation test. Trop Med Int Health 15:796–799

    Article  PubMed  Google Scholar 

  • Carducci C, Ellul L, Antonozzi I et al (1992) DNA elution and amplification by polymerase chain reaction from dried blood spots. Biotechniques 13:735–737

    PubMed  CAS  Google Scholar 

  • Chatel G, Gulletta M, Matteelli A et al (1999) Diagnosis of tick-borne relapsing fever by the quantitative buffy coat fluorescence method. Am J Trop Med Hyg 60:738–739

    PubMed  CAS  Google Scholar 

  • Claes F, Radwanska M, Urakawa T et al (2004) Variable surface glycoprotein RoTat 1.2 PCR as a specific diagnostic tool for the detection of Trypanosoma evansi infections. Kinetoplastid Biol Dis 3:1–6

    Article  CAS  Google Scholar 

  • Cortez AP, Rodrigues AC, Garcia HA et al (2009) Cathepsin L-like genes of Trypanosoma vivax from Africa and South America–characterization, relationships and diagnostic implications. Mol Cell Probes 23:44–51

    Article  PubMed  CAS  Google Scholar 

  • Pereira de Almeida PJL (1999) Contributions to the diagnostic evaluation of the Polymerase Chain Reaction for the detection of Salivarian trypanosomes. PhD Thesis, Université Libre de Bruxelles, Brussels, Belgium

    Google Scholar 

  • de Clare Bronsvoort BM, von Wissmann B, Fèvre EM et al (2010) No gold standard estimation of the sensitivity and specificity of two molecular diagnostic protocols for Trypanosoma brucei spp. in Western Kenya. PLoS One 5:e8628

    Article  PubMed  CAS  Google Scholar 

  • Deborggraeve S, Büscher P (2010) Molecular diagnostics for sleeping sickness: where’s the benefit for the patient? Lancet Infect Dis 10:433–439

    Article  PubMed  Google Scholar 

  • Deborggraeve S, Büscher P (2012) Recent progress in molecular diagnosis of sleeping sickness. Expert Rev Mol Diagn 12:719–730

    Article  PubMed  CAS  Google Scholar 

  • Deborggraeve S, Claes F, Laurent T et al (2006) Molecular dipstick test for diagnosis of sleeping sickness. J Clin Microbiol 44:2884–2889

    Article  PubMed  CAS  Google Scholar 

  • Deborggraeve S, Koffi M, Jamonneau V et al (2008) Molecular analysis of archived blood slides reveals an atypical human Trypanosoma infection. Diagn Microbiol Infect Dis 61:428–433

    Article  PubMed  CAS  Google Scholar 

  • Deborggraeve S, Lejon V, Ali Ekangu R et al (2011a) Diagnostic accuracy of PCR in gambiense sleeping sickness diagnosis, staging and post-treatment follow-up: a 2-year longitudinal study. PLoS Negl Trop Dis 5:e972

    Article  PubMed  Google Scholar 

  • Deborggraeve S, Lejon V, Ali Ekangu R et al (2011b) How reliable is PCR for diagnosis, staging and follow-up of gambiense sleeping sickness? Trop Med Int Health 16(S1):168

    Google Scholar 

  • Desquesnes M, McLaughlin G, Zoungrana A et al (2001) Detection and identification of Trypanosoma of African livestock through a single PCR based on internal transcribed spacer 1 of rDNA. Int J Parasitol 31:610–614

    Article  PubMed  CAS  Google Scholar 

  • Desquesnes M, Bosseno M-F, Brenière SF (2007) Detection of Chagas infections using Trypanosoma evansi crude antigen demonstrates high cross-reactions with Trypanosoma cruzi. Infect Genet Evol 7:457–462

    Article  PubMed  CAS  Google Scholar 

  • Desquesnes M, Kamyingkird K, Yangtara S et al (2011) Specific primers for PCR amplification of the ITS1 (ribosomal DNA) of Trypanosoma lewisi. Infect Genet Evol 11:1361–1367

    Article  PubMed  CAS  Google Scholar 

  • Duffy T, Cura CI, Ramirez JC et al (2013) Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl Trop Dis 7:e2000

    Article  PubMed  CAS  Google Scholar 

  • Ebeja AK (2012) Journée Scientifique THA à Kinshasa. Bull HAT Platform 12:9–10

    Google Scholar 

  • Enøe C, Georgiadis MP, Johnson WO (2000) Estimation of sensitivity and specificity of diagnostic tests and disease prevalence when the true disease state is unknown. Prev Vet Med 45:61–81

    Article  PubMed  Google Scholar 

  • Fikru R, Goddeeris BM, Delespaux V et al (2012) Widespread occurrence of Trypanosoma vivax in bovines of tsetse- as well as non-tsetse-infested regions of Ethiopia: a reason for concern? Vet Parasitol 190:355–361

    Article  PubMed  Google Scholar 

  • Geysen D, Delespaux V, Geerts S (2003) PCR-RFLP using Ssu-rDNA amplification as an easy method for species-specific diagnosis of Trypanosoma species in cattle. Vet Parasitol 110:171–180

    Article  PubMed  CAS  Google Scholar 

  • Giroud C, Ottones F, Coustou V et al (2009) Murine models for Trypanosoma brucei gambiense disease progression-from silent to chronic infections and early brain tropism. PLoS Negl Trop Dis 3:e509

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez C, Corbera JA, Doreste F et al (2004) Use of the miniature anion exchange centrifugation technique to isolate Trypanosoma evansi from goats. Ann N Y Acad Sci 1026:149–151

    Article  PubMed  Google Scholar 

  • Hainard A, Tiberti N, Robin X et al (2009) A combined CXCL10, CXCL8 and H-FABP panel for the staging of human African trypanosomiasis patients. PLoS Negl Trop Dis 3:e459

    Article  PubMed  CAS  Google Scholar 

  • Hasker E, Lumbala C, Mbo F et al (2011) Health care-seeking behaviour and diagnostic delays for Human African Trypanosomiasis in the Democratic Republic of the Congo. Trop Med Int Health 16:869–874

    Article  PubMed  CAS  Google Scholar 

  • Herwaldt BL (2001) Laboratory-acquired parasitic infections from accidental exposures. Clin Microbiol Rev 14:659–688

    Article  PubMed  CAS  Google Scholar 

  • Holland WG, Claes F, My LN et al (2001) A comparative evaluation of parasitological tests and a PCR for Trypanosoma evansi diagnosis in experimentally infected water buffaloes. Vet Parasitol 97:23–33

    Article  PubMed  CAS  Google Scholar 

  • Holland WG, Thanh NG, My LN et al (2002) Evaluation of whole fresh blood and dried blood on filter paper discs in serological tests for Trypanosoma evansi in experimentally infected water buffaloes. Acta Trop 81:159–165

    Article  PubMed  CAS  Google Scholar 

  • Imboden M, Müller N, Hemphill A et al (1995) Repetitive proteins from the flagellar cytoskeleton of African trypanosomes are diagnostically useful antigens. Parasitology 110:249–258

    Article  PubMed  CAS  Google Scholar 

  • Jamonneau V, Solano P, Garcia A et al (2007) Application of PCR/CSF for stage determination and therapeutic decision in human African trypanosomiasis in Cöte d’Ivoire. In: Crowther JR (ed) Developing methodologies for the use of polymerase chain reaction in the diagnosis and monitoring of trypanosomosis. International Atomic Energy Agency, Vienna, pp 27–35

    Google Scholar 

  • Jamonneau V, Bucheton B, Kabore J et al (2010) Revisiting the immune trypanolysis test to optimise epidemiological surveillance and control of sleeping sickness in west Africa. PLoS Negl Trop Dis 4:e917

    Article  PubMed  Google Scholar 

  • Joseph L, Gyorkos TW, Coupal L (1995) Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol 141:263–272

    PubMed  CAS  Google Scholar 

  • Kabiri M, Franco JR, Simarro PP et al (1999) Detection of Trypanosoma brucei gambiense in sleeping sickness suspects by PCR amplification of expression-site-associated genes 6 and 7. Trop Med Int Health 4:658–661

    Article  PubMed  CAS  Google Scholar 

  • Kashiwazaki Y, Snowden K, Smith DH et al (1994) A multiple antigen detection dipstick colloidal dye immunoassay for the field diagnosis of trypanosome infections in cattle. Vet Parasitol 55:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff LV (1998) Use of a PCR assay for diagnosing African trypanosomiasis of the CNS: a case report. Cent Afr J Med 44:134–136

    PubMed  CAS  Google Scholar 

  • Kjeldsberg CR, Knight JA (1993) Cerebrospinal fluid. In: Johnson KD (ed) Body fluids. American Society of Clinical Pathologists (ASCP), Chicago, IL, pp 65–157

    Google Scholar 

  • Kocher TD, Thomas WK, Meyer A et al (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  PubMed  CAS  Google Scholar 

  • Kuboki N, Inoue N, Sakurai T et al (2003) Loop-mediated isothermal amplification for detection of African trypanosomes. J Clin Microbiol 41:5517–5524

    Article  PubMed  CAS  Google Scholar 

  • Kuhn W, Armstrong D, Atteberry S et al (2010) Usefulness of the paralens fluorescent microscope adaptor for the identification of mycobacteria in both field and laboratory settings. Open Microbiol J 4:30–33

    Article  PubMed  Google Scholar 

  • Kyambadde JW, Enyaru JCK, Matovu E et al (2000) Detection of trypanosomes in suspected sleeping sickness patients in Uganda using the polymerase chain reaction. Bull World Health Organ 78:119–124

    PubMed  CAS  Google Scholar 

  • Lanham SM, Godfrey DG (1970) Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol 28:521–534

    Article  PubMed  CAS  Google Scholar 

  • Lejon V, Büscher P (2002) Sleeping sickness: from intrathecal IgM synthesis to card agglutination. Acta Trop 83:S70

    Google Scholar 

  • Lejon V, Büscher P (2005) Cerebrospinal fluid in human African trypanosomiasis: a key to diagnosis, therapeutic decision and post-treatment follow-up. Trop Med Int Health 10:395–403

    Article  PubMed  CAS  Google Scholar 

  • Lejon V, Moons A, Büscher P, et al (1997) Trypanosome specific antibody profile in serum and cerebrospinal fluid of T.b. gambiense patients. In: Ndung’u JM (ed) Twenty-third meeting of the international scientific council for trypanosomiasis research and control (ISCTRC), Banjul, The Gambia, 11–15 Sept 1995. OAU/STRC, Nairobi, pp 78–91

    Google Scholar 

  • Lejon V, Büscher P, Magnus E et al (1998) A semi-quantitative ELISA for detection of Trypanosoma brucei gambiense specific antibodies in serum and cerebrospinal fluid of sleeping sickness patients. Acta Trop 69:151–164

    Article  PubMed  CAS  Google Scholar 

  • Lejon V, Rosengren LE, Büscher P et al (1999) Detection of light subunit neurofilament and glial fibrillary acidic protein in cerebrospinal fluid of Trypanosoma brucei gambiense -infected patients. Am J Trop Med Hyg 60:94–98

    PubMed  CAS  Google Scholar 

  • Lejon V, Lardon J, Kenis G et al (2002) Interleukin-6, IL-8 and IL-10 in serum and CSF of T.b. gambiense sleeping sickness patients before and after treatment. Trans R Soc Trop Med Hyg 96:329–333

    Article  PubMed  CAS  Google Scholar 

  • Lejon V, Ameel V, Brandt J, Van den Bossche P, Büscher P (2003a) Development of a direct immunofluorescence test (DIFAT) for parasitological diagnosis of African trypanosomiasis. In: Abstracts of the 27th meeting of the international scientific council for trypanosomiasis research and control (ISCTRC), Nairobi, Kenya, Sept 2003

    Google Scholar 

  • Lejon V, Boelaert M, Jannin J et al (2003b) The challenge of Trypanosoma brucei gambiense sleeping sickness diagnosis outside Africa. Lancet Infect Dis 3:804–808

    Article  PubMed  CAS  Google Scholar 

  • Lejon V, Legros D, Savignoni A et al (2003c) Neuro-inflammatory risk factors for treatment failure in “early second stage” sleeping sickness patients treated with Pentamidine. J Neuroimmunol 144:132–138

    Article  PubMed  CAS  Google Scholar 

  • Lejon V, Rebeski DE, Ndao M et al (2003d) Performance of enzyme-linked immunosorbent assays for detection of antibodies against T. congolense and T. vivax in goats. Vet Parasitol 116:87–95

    Article  PubMed  CAS  Google Scholar 

  • Lejon V, Reiber H, Legros D et al (2003e) Intrathecal immune response pattern for improved diagnosis of central nervous system involvement in trypanosomiasis. J Infect Dis 187:1475–1483

    Article  PubMed  Google Scholar 

  • Lejon V, Claes F, Verloo D et al (2005) Recombinant RoTat 1.2 variable surface glycoprotein for diagnosis of Trypanosoma evansi in dromedary camel. Int J Parasitol 35:455–460

    Article  PubMed  CAS  Google Scholar 

  • Lejon V, Jamonneau V, Solano P et al (2006) Detection of trypanosome-specific antibodies in saliva, towards non-invasive serological diagnosis of sleeping sickness. Trop Med Int Health 11:620–627

    Article  PubMed  CAS  Google Scholar 

  • Levine RA, Wardlaw SC, Patton CL (1989) Detection of haemoparasites using quantitative buffy coat analysis tubes. Parasitol Today 5:132–134

    Article  PubMed  CAS  Google Scholar 

  • Liu MK, Pearson TW (1987) Detection of circulating trypanosomal antigens by double antibody ELISA using antibodies to procyclic trypanosomes. Parasitology 95:277–290

    Article  PubMed  Google Scholar 

  • Lorger M, Engstler M, Homann M et al (2003) Targeting the variable surface of African trypanosomes with variant surface glycoprotein-specific, serum-stable RNA aptamers. Eukaryot Cell 2:84–94

    Article  PubMed  CAS  Google Scholar 

  • Luckins AG, Mehlitz D (1978) Evaluation of an indirect fluorescent antibody test, enzyme-linked immunosorbent assay and quantification of immunoglobulins in the diagnosis of bovine trypanosomiasis. Trop Anim Health Prod 10:149–159

    Article  PubMed  CAS  Google Scholar 

  • Lumsden WHR, Kimber CD, Evans DA et al (1979) Trypanosoma brucei: miniature anion-exchange centrifugation technique for detection of low parasitaemias: adaptation for field use. Trans R Soc Trop Med Hyg 73:312–317

    Article  PubMed  CAS  Google Scholar 

  • MacLean L, Odiit M, Okitoi D et al (1999) Plasma nitrate and interferron-gamma in Trypanosoma brucei rhodesiense infections: evidence that nitric oxide production is induced during both early blood-stage and late meningoencephalitic-stage infections. Trans R Soc Trop Med Hyg 93:169–170

    Article  PubMed  CAS  Google Scholar 

  • Magnus E, Vervoort T, Van Meirvenne N (1978) A card-agglutination test with stained trypanosomes (C.A.T.T.) for the serological diagnosis of T.b.gambiense trypanosomiasis. Ann Soc Belg Med Trop 58:169–176

    PubMed  CAS  Google Scholar 

  • Matovu E, Kuepfer I, Boobo A et al (2010a) Comparative detection of trypanosomal DNA by loop-mediated isothermal amplification and PCR from flinders technology associates cards spotted with patient blood. J Clin Microbiol 48:2087–2090

    Article  PubMed  CAS  Google Scholar 

  • Matovu E, Mugasa CM, Ali Ekangu R et al (2010b) Phase II evaluation of sensitivity and specificity of PCR and NASBA followed by oligochromatography for diagnosis of human African trypanosomiasis in D.R. Congo and Uganda. PLoS Negl Trop Dis 4:e737

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Palomares C, Biteau N, Giroud C et al (2008) Molecular and biochemical characterization of a cathepsin B-like protease family unique to Trypanosoma congolense. Eukaryot Cell 7:684–697

    Article  PubMed  CAS  Google Scholar 

  • Miézan TW, Meda AH, Doua F et al (2000) Single centrifugation of cerebrospinal fluid in a sealed pasteur pipette for simple, rapid and sensitive detection of trypanosomes. Trans R Soc Trop Med Hyg 94:293

    Article  PubMed  Google Scholar 

  • Mori Y, Nagamine K, Tomita N et al (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289:150–154

    Article  PubMed  CAS  Google Scholar 

  • Moser DR, Cook GA, Ochs DE et al (1989) Detection of Trypanosoma congolense and Trypanosoma brucei subspecies by DNA amplification using the polymerase chain reaction. Parasitology 99:57–66

    Article  PubMed  Google Scholar 

  • Mpandzou G, Cespuglio R, Ngampo S et al (2011) Polysomnography as a diagnosis and post-treatment follow-up tool in human African trypanosomiasis: a case study in an infant. J Neurol Sci 305:112–115

    Article  PubMed  Google Scholar 

  • Mugasa CM, Schoone GJ, Ekangu RA et al (2008) Detection of Trypanosoma brucei parasites in blood samples using real-time nucleic acid sequence-based amplification. Diagn Microbiol Infect Dis 61:440–445

    Article  PubMed  CAS  Google Scholar 

  • Mugasa CM, Laurent T, Schoone GJ et al (2009) Nucleic acid sequence-based amplification with oligochromatography for detection of Trypanosoma brucei in clinical samples. J Clin Microbiol 47:630–635

    Article  PubMed  CAS  Google Scholar 

  • Mugasa CM, Adams ER, Boer KR et al (2012) Diagnostic accuracy of molecular amplification tests for human African trypanosomiasis-systematic review. PLoS Negl Trop Dis 6:e1438

    Article  PubMed  CAS  Google Scholar 

  • Müller N, Hemphill A, Imboden M et al (1992) Identification and characterization of two repetitive non-variable antigens from African trypanosomes which are recognized early during infection. Parasitology 104:111–120

    Article  PubMed  Google Scholar 

  • Mumba Ngoyi D, Lejon V, N’Siesi FX et al (2009) Comparison of operational criteria for treatment outcome in gambiense human African trypanosomiasis. Trop Med Int Health 14:438–444

    Article  PubMed  CAS  Google Scholar 

  • Mumba Ngoyi D, Lejon V, Pyana P et al (2010) How to shorten patient follow-up after treatment for Trypanosoma brucei gambiense sleeping sickness? J Infect Dis 201:453–463

    Article  PubMed  CAS  Google Scholar 

  • Mumba Ngoyi D, Bohorquez E, Messina J et al (2011) Prevalence of human African trypanosomiasis in the Democratic Republic of the Congo. PLoS Negl Trop Dis 5:e1246

    Article  Google Scholar 

  • Mumba Ngoyi D, Menten J, Pyana PP et al (2013) Stage determination in sleeping sickness: comparison of two cell counting and two parasite detection techniques. Trop Med Int Health 18(6):778–782

    Article  PubMed  Google Scholar 

  • Murray M, Murray PK, McIntyre WIM (1977) An improved parasitological technique for the diagnosis of African trypanosomiasis. Trans R Soc Trop Med Hyg 71:325–326

    Article  PubMed  CAS  Google Scholar 

  • Namangala B, Hachaambwa L, Kajino K et al (2012) The use of Loop-mediated Isothermal Amplification (LAMP) to detect the re-emerging Human African Trypanosomiasis (HAT) in the Luangwa and Zambezi valleys. Parasit Vectors 5:e282

    Article  CAS  Google Scholar 

  • Nantulya VM, Lindqvist KJ (1989) Antigen-detection enzyme immunoassays for the diagnosis of Trypanosoma vivax, T. congolense and T. brucei infections in cattle. Trop Med Parasitol 40:267–272

    PubMed  CAS  Google Scholar 

  • Ngaira JM, Olembo NK, Njagi ENM et al (2005) The detection of non-RoTat 1.2 Trypanosoma evansi. Exp Parasitol 110:30–38

    Article  PubMed  CAS  Google Scholar 

  • Njamnshi AK, Seke Etet PF, Perrig S et al (2012) Actigraphy in human African trypanosomiasis as a tool for objective clinical evaluation and monitoring: a pilot study. PLoS Negl Trop Dis 6:e1525

    Article  PubMed  Google Scholar 

  • Njiru ZK (2011) Rapid and sensitive detection of human African trypanosomiasis by loop-mediated isothermal amplification combined with a lateral-flow dipstick. Diagn Microbiol Infect Dis 69:205–209

    Article  PubMed  CAS  Google Scholar 

  • Njiru ZK (2012) Loop-mediated isothermal amplification technology: towards point of care diagnostics. PLoS Negl Trop Dis 6:e1572

    Article  PubMed  Google Scholar 

  • Njiru ZK, Ndung’u K, Matete G et al (2004) Detection of Trypanosoma brucei rhodesiense in animals from sleeping sickness foci in East Africa using the serum resistance (SRA) gene. Acta Trop 90:249–254

    Article  PubMed  CAS  Google Scholar 

  • Njiru ZK, Constantine CC, Guya S et al (2005) The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol Res 95:186–192

    Article  PubMed  CAS  Google Scholar 

  • Njiru ZK, Mikosza ASJ, Armstrong T et al (2008a) Loop-mediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis 2:e147

    Article  PubMed  CAS  Google Scholar 

  • Njiru ZK, Mikosza ASJ, Matovu E et al (2008b) African trypanosomiasis: Sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA. Int J Parasitol 38:589–599

    Article  PubMed  CAS  Google Scholar 

  • Njiru ZK, Traub R, Ouma JO et al (2011) Detection of group 1 Trypanosoma brucei gambiense by Loop-Mediated Isothermal Amplification. J Clin Microbiol 49:1530–1536

    Article  PubMed  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:7–9

    Article  Google Scholar 

  • OIE (2012) Manual of diagnostic tests and vaccines for terrestrial animals. http://www.oie.int/manual-of-diagnostic-tests-and-vaccines-for-terrestrial-animals/

  • Olaho-Mukani W, Munyua WK, Mutugi MW et al (1993) Comparison of antibody- and antigen-detection enzyme immunoassays for the diagnosis of Trypanosoma evansi infections in camels. Vet Parasitol 45:231–240

    Article  PubMed  CAS  Google Scholar 

  • Pascucci I, Di Provvido A, Camara C et al (2013) Diagnosis of dourine outbreaks in Italy. Vet Parasitol 193:30–38

    Article  PubMed  Google Scholar 

  • Peeling RW, Holmes KK, Mabey D et al (2006) Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Dis 82(Suppl V):v1–v6

    Google Scholar 

  • Pentreath VW, Owolabi AO, Doua F (1992) Survival of Trypanosoma brucei brucei in cerebrospinal fluid. Ann Trop Med Parasitol 86:29–34

    PubMed  CAS  Google Scholar 

  • Pereira de Almeida PJL, Ndao M, Van Meirvenne N et al (1998) Diagnostic evaluation of PCR on dried blood samples from goats experimentally infected with Trypanosoma brucei brucei. Acta Trop 70:269–276

    Article  Google Scholar 

  • Picozzi K, Carrington M, Welburn SC (2008) A multiplex PCR that discriminates between Trypanosoma brucei brucei and zoonotic T. b. rhodesiense. Exp Parasitol 118:41–46

    Article  PubMed  CAS  Google Scholar 

  • Priotto G, Chappuis F, Bastard M et al (2012) Early prediction of treatment efficacy in second-stage gambiense human African trypanosomiasis. PLoS Negl Trop Dis 6:e1662

    Article  PubMed  Google Scholar 

  • Radwanska M, Chamekh M, Vanhamme L et al (2002a) The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. Am J Trop Med Hyg 67:684–690

    PubMed  CAS  Google Scholar 

  • Radwanska M, Claes F, Magez S et al (2002b) Novel primer sequences for a polymerase chain reaction-based detection of Trypanosoma brucei gambiense. Am J Trop Med Hyg 67:289–295

    PubMed  CAS  Google Scholar 

  • Radwanska M, Magez S, Perry-O’Keefe H et al (2002c) Direct detection and identification of African trypanosomes by fluorescence in situ hybridization using peptide nucleic acid probes. J Clin Microbiol 40:4295–4297

    Article  PubMed  CAS  Google Scholar 

  • Rae PF, Luckins AG (1984) Detection of circulating trypanosomal antigens by enzyme immunoassay. Ann Trop Med Parasitol 78:587–596

    PubMed  CAS  Google Scholar 

  • Rebeski DE, Winger EM, Rogovic B et al (1999) Improved methods for the diagnosis of African trypanosomosis. Mem Inst Oswaldo Cruz 94:249–253

    Article  PubMed  CAS  Google Scholar 

  • Rebeski DE, Winger EM, Okoro H et al (2000) Detection of Trypanosoma congolense with indirect ELISAs using antigen-precoated microtitre plates. Vet Parasitol 89:187–198

    Article  PubMed  CAS  Google Scholar 

  • Rebeski DE, Winger EM, Ouma JO et al (2001) Charting methods to monitor the operational performance of ELISA method for the detection of antibodies against trypanosomes. Vet Parasitol 96:11–50

    Article  PubMed  CAS  Google Scholar 

  • Rogé S, Heykers A, Brouwer de Koning A, Guisez Y, Büscher P (2011a) Recombinant expression of LiTat 1.3 VSG in Pichia pastoris for serodiagnosis of gambiense sleeping sickness. In: Abstracts of the 31st meeting of the international scientific council for trypanosomiasis research and control, Bamako, Mali, 12–16 Sept 2011

    Google Scholar 

  • Rogé S, Van Reet N, Wand N, Guisez Y, Rudenko G, Büscher P (2011b) Immune trypanolysis on non-human infective trypanosomes for diagnosis of gambiense sleeping sickness. In: Abstracts of the 31st meeting of the international scientific council for trypanosomiasis research and control, Bamako, Mali, 12–16 Sept 2011

    Google Scholar 

  • Rogé S, Guisez Y, Büscher P (2012a) A new latex agglutination test for surra based on recombinant Trypanosoma evansi RoTat 1.2 variant surface glycoprotein expressed in the Pichia pastoris GlycoSwitch™ M5 strain. In: Abstracts of the Pichia 2012, Alpbach, Austria, 29 Feb–3 Mar 2012

    Google Scholar 

  • Rogé S, Meul M, Guisez Y, Gilleman Q, Simon T, Büscher P (2012b) Development of rapid diagnostic tests for surra and sleeping sickness based on recombinant antigens expressed in Pichia pastoris. In: Abstracts of the Pathogens’ survival strategies, from fundamentals to field. ITM 54th international colloquium, Antwerp, Belgium, 3–5 Dec 2012

    Google Scholar 

  • Rogé S, Van Reet N, Odiwuor SO, Schildermans K, Vandamme S, Vandenberghe I, Vervecken W, Gillingwater K, Claes F, Devreese B, Guisez Y, Büscher P (2012c) Recombinant expression of trypanosome surface glycoproteins in Pichia pastoris for the diagnosis of Trypanosoma evansi infection. In: Abstracts of the Pathogens’ survival strategies, from fundamentals to field. ITM 54th international colloquium, Antwerp, Belgium, 3–5 Dec 2012

    Google Scholar 

  • Rogé S, Van Reet N, Odiwuor S, Tran T, Schildermans K, Vandamme S, Vandenberghe I, Vervecken W, Gillingwater K, Claes F, Devreese B, Guisez Y, Büscher P (2013) Recombinant expression of trypanosome surface glycoprtoteins in Pichia pastoris for the diagnosis of Trypanosoma evansi infection. Vet Parasitol. doi:10.1016/j.vetpar.2013.05.009

  • Rutjes AW, Reitsma JB, Coomarasamy A et al (2007) Evaluation of diagnostic tests when there is no gold standard. A review of methods. Health Technol Assess 11:iii, ix-51

    Google Scholar 

  • Sengupta PP, Balumahendiran M, Suryanaryana VVS et al (2010) PCR-based diagnosis of surra-targeting VSG genen: experimental studies in small laboratory rodents and buffalo. Vet Parasitol 171:22–31

    Article  PubMed  CAS  Google Scholar 

  • Sengupta PP, Balumahendiran M, Balamurugan V et al (2013) Expressed truncated N-terminal variable surface glycoprotein (VSG) of Trypanosoma evansi in E. coli exhibits immuno-reactivity. Vet Parasitol 187:1–8

    Article  CAS  Google Scholar 

  • Sharma P, Juyal PD, Singla LD et al (2012) Comparative evaluation of real time PCR assay with conventional parasitological techniques for diagnosis of Trypanosoma evansi in cattle and buffaloes. Vet Parasitol 190:375–382

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi T, Deborggraeve S, Büscher P et al (2011) Sensitive detection of nucleic acids by PNA hybridization directed co-localization of fluorescent beads. Artif DNA PNA XNA 2:60–66

    Article  PubMed  Google Scholar 

  • Sullivan L, Wall SJ, Carrington M et al (2013) Proteomic selection of immunodiagnostic antigens for human African trypanosomiasis and generation of a protoype lateral flow immunodiagnostic device. PLoS Negl Trop Dis 7:e2087

    Article  PubMed  Google Scholar 

  • Thekisoe OMM, Kuboki N, Nambota A et al (2007) Species-specific loop-mediated isothermal amplification (LAMP) for diagnosis of trypanosomosis. Acta Trop 102:182–189

    Article  PubMed  CAS  Google Scholar 

  • Thuy NT, Goto Y, Lun ZR et al (2012) Tandem repeat protein as potential diagnostic antigen for Trypanosoma evansi infection. Parasitol Res 110:733–739

    Article  PubMed  Google Scholar 

  • Tiberti N, Hainard A, Lejon V et al (2013a) Cerebrospinal fluid neopterin is a marker of the meningo-encephalitic stage of Trypanosoma brucei gambiense sleeping sickness. PLoS One 7:e40909

    Article  CAS  Google Scholar 

  • Tiberti N, Lejon V, Hainard A et al (2013b) Neopterin is a cerebrospinal fluid marker for treatment outcome evaluation in patients affected by Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis 7:e2088

    Article  PubMed  CAS  Google Scholar 

  • Tomita N, Mori Y, Kanda H et al (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882

    Article  PubMed  CAS  Google Scholar 

  • Tran T, Claes F, Verloo D et al (2009) Towards a new reference test for surra in camels. Clin Vaccine Immunol 16:999–1002

    Article  PubMed  CAS  Google Scholar 

  • Truc P, Jamonneau V, Cuny G et al (1999) Use of polymerase chain reaction in human African trypanosomiasis stage determination and follow-up. Bull World Health Organ 77:745–748

    PubMed  CAS  Google Scholar 

  • Truc P, Lando A, Penchenier L et al (2012) Human African trypanosomiasis in Angola: clinical observations, treatment, and use of PCR for stage determination of early stage of the disease. Trans R Soc Trop Med Hyg 106:10–14

    Article  PubMed  CAS  Google Scholar 

  • Van Meirvenne N, Magnus E, Büscher P (1995) Evaluation of variant specific trypanolysis tests for serodiagnosis of human infections with Trypanosoma brucei gambiense. Acta Trop 60:189–199

    Article  PubMed  Google Scholar 

  • Van Nieuwenhove L, Rogé S, Balharbi F et al (2011) Identification of peptide mimotopes of Trypanosoma brucei gambiense variant surface glycoproteins. PLoS Negl Trop Dis 5:e1189

    Article  PubMed  CAS  Google Scholar 

  • Van Nieuwenhove L, Büscher P, Balharbi F et al (2012) Identification of mimotopes with diagnostic potential for Trypanosoma brucei gambiense variant surface glycoproteins with human antibody fractions. PLoS Negl Trop Dis 6:e1682

    Article  PubMed  CAS  Google Scholar 

  • Van Nieuwenhove L, Büscher P, Balharbi F et al (2013) A LiTat 1.5 variant surface glycoprotein-derived peptide with diagnostic potential for Trypanosoma brucei gambiense. Trop Med Int Health 18:461–465

    Article  PubMed  CAS  Google Scholar 

  • Verloo D, Tibayrenc R, Magnus E et al (1998) Performance of serological tests for Trypanosoma evansi infections in camels from Niger. J Protozool Res 8:190–193

    Google Scholar 

  • Verma A, Manchanda S, Kumar N et al (2011) Trypanosoma lewisi or T. lewisi-like infection in a 37-day-old Indian infant. Am J Trop Med Hyg 85:221–224

    Article  PubMed  Google Scholar 

  • Vitouley HS, Mungube EO, Allegye-Cudjoe E et al (2011) Improved PCR-RFLP for the detection of diminazene resistance in Trypanosoma congolense under field conditions using filter papers for sample storage. PLoS Negl Trop Dis 5:e1223

    Article  PubMed  CAS  Google Scholar 

  • Wastling SL, Picozzi K, Kakembo AS et al (2010) LAMP for human African trypanosomiasis: a comparative study of detection formats. PLoS Negl Trop Dis 4:e865

    Article  PubMed  CAS  Google Scholar 

  • Welburn SC, Picozzi K, Fèvre EM et al (2001) Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene. Lancet 358:2017–2019

    Article  PubMed  CAS  Google Scholar 

  • Woo PTK (1970) The haematocrit centrifuge technique for the diagnosis of African trypanosomiasis. Acta Trop 27:384–386

    PubMed  CAS  Google Scholar 

  • Woo PTK, Soltys MA (1972) The indirect haemagglutination and charcoal-agglutination tests in the diagnosis of African sleeping sickness. Tropenmed Parasitol 23:324–327

    CAS  Google Scholar 

  • World Health Organization (1986) Epidemiology and control of African trypanosomiasis. WHO Technical Report Series 739, World Health Organization, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Büscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Büscher, P. (2014). Diagnosis of African Trypanosomiasis. In: Magez, S., Radwanska, M. (eds) Trypanosomes and Trypanosomiasis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1556-5_8

Download citation

Publish with us

Policies and ethics