Advertisement

Proteomics and African Trypanosomes: Shedding New Light on Host–Vector–Parasite Interactions and Impact on Control Methods

  • Philippe HolzmullerEmail author
  • Pascal Grébaut
  • Anne Geiger
Chapter

Abstract

Most mammalian and vector host species have acquired strategies by selective pressure to mislead the trypanosome and to win the fight during their molecular dialogue. Due to the same evolutionary pressure, trypanosomes have acquired strategies to bypass the host defences and to ensure the completion of their complex life cycles. Elucidation of these complex molecular crosstalks will improve the understanding of trypanosomes’ variability with respect to virulence and pathogenicity, will help to define trypansome-specific host biomarkers and will help to refine control strategies for African trypanosomoses. Advances in proteomics applications have provided new insights on African trypanosomes and on the biochemical interactions with their tsetse vectors and mammalian hosts. In this chapter, we present the interest of proteomics to characterise trypanosomes–hosts interactions, a synthetic review of proteomics studies performed on the parasite and its respective hosts, a discussion on the contributions and pitfalls of using diverse proteomics tools, a view for future prospects on proteomics dedicated to African trypanosomes and a projection of new conceptual approaches (i.e. metabolomics, interactomics, population proteomics) to accurately decipher insect vector–trypanosome–mammalian host interactions, with the idea of further developing new tools to improve trypanosomoses control.

Keywords

Mammalian Host Bloodstream Form Variant Surface Glycoprotein Trypanosome Infection Peritrophic Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acestor N, Panigrahi AK, Ogata Y et al (2009) Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics 9:5497–5508PubMedGoogle Scholar
  2. Acestor N, Zíková A, Dalley RA et al (2011) Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Mol Cell Proteomics 10:M110.006908PubMedGoogle Scholar
  3. Agranoff D, Stich A, Abel P et al (2005) Proteomic fingerprinting for the diagnosis of human African trypanosomiasis. Trends Parasitol 21:154–157PubMedGoogle Scholar
  4. Aksoy S, Gibson WC, Lehane MJ et al (2003) Perspectives on the interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis. Adv Parasitol 62:1–83Google Scholar
  5. Anderson NL, Parish NM, Richardson JP et al (1985) Comparison of African trypanosomes of different antigenic phenotypes, subspecies and life cycle stages by two-dimensional gel electrophoresis. Mol Biochem Parasitol 16:299–314PubMedGoogle Scholar
  6. Angel TE, Jacobs JM, Spudich SS et al (2012) The cerebrospinal fluid proteome in HIV infection: change associated with disease severity. Clin Proteomics 9:3PubMedGoogle Scholar
  7. Bakker BM, Krauth-Siegel RL, Clayton C et al (2010) The silicon trypanosome. Parasitology 137:1333–1341PubMedGoogle Scholar
  8. Barry JD, McCulloch R (2001) Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol 49:1–70PubMedGoogle Scholar
  9. Bechter K, Reiber H, Herzog S et al (2010) Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood-CSF barrier dysfunction. J Psychiatr Res 44:321–330PubMedGoogle Scholar
  10. Biron DG, Joly C, Galeotti N et al (2005) The proteomics: a new prospect for studying parasitic manipulation. Behav Processes 68:249–253PubMedGoogle Scholar
  11. Biron DG, Loxdale HD, Ponton F et al (2006) Population proteomics: an emerging discipline to study metapopulation ecology. Proteomics 6:1712–1715PubMedGoogle Scholar
  12. Biron DG, Hughes AL, Loxdale HD et al (2007) The need for megatechnologies: massive sequencing, proteomics and bioinformatics. In: Tibayrenc M (ed) Encyclopedia of infectious diseases: modern technologies. Wiley, New York, pp 357–377Google Scholar
  13. Bociąga-Jasik M, Cieśla A, Kalinowska-Nowak A et al (2011) Role of IL-6 and neopterin in the pathogenesis of herpetic encephalitis. Pharmacol Rep 63:1203–1209PubMedGoogle Scholar
  14. Bridges DJ, Pitt AR, Hanrahan O et al (2008) Characterisation of the plasma membrane subproteome of bloodstream form Trypanosoma brucei. Proteomics 8:83–99PubMedGoogle Scholar
  15. Broadhead R, Dawe HR, Farr H et al (2006) Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:224–227PubMedGoogle Scholar
  16. Bucheton B, MacLeod A, Jamonneau V (2011) Human host determinants influencing the outcome of Trypanosoma brucei gambiense infections. Parasite Immunol 33:438–447PubMedGoogle Scholar
  17. Butter F, Bucerius F, Michel M et al (2013) Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite’s host adaptation machinery. Mol Cell Proteomics 12:172–179PubMedGoogle Scholar
  18. Caljon G, Broos K, De Goeyse I et al (2009) Identification of a functional Antigen5-related allergen in the saliva of a blood feeding insect, the tsetse fly. Insect Biochem Mol Biol 39:332–341PubMedGoogle Scholar
  19. Chandra M, Liniger M, Tetley L et al (2004) TsetseEP, a gut protein from the tsetse Glossina morsitans, is related to a major surface glycoprotein of trypanosomes transmitted by the fly and to the products of a Drosophila gene family. Insect Biochem Mol Biol 3:1163–1173Google Scholar
  20. Colasante C, Ellis M, Ruppert T, Voncken F (2006) Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei. Proteomics 6:3275–3293PubMedGoogle Scholar
  21. Courtioux B, Bisser S, M’belesso P et al (2005) Dot enzyme-linked immunosorbent assay for more reliable staging of patients with Human African trypanosomiasis. J Clin Microbiol 43:4789–4795PubMedGoogle Scholar
  22. Courtioux B, Pervieux L, Vatunga G et al (2009) Increased CXCL-13 levels in human African trypanosomiasis meningo-encephalitis. Trop Med Int Health 14:529–534PubMedGoogle Scholar
  23. Creek DJ, Anderson J, McConville MJ et al (2012) Metabolomic analysis of trypanosomatid protozoa. Mol Biochem Parasitol 181:73–84PubMedGoogle Scholar
  24. Cuervo P, Domont GB, De Jesus JB (2010) Proteomics of trypanosomatids of human medical importance. J Proteomics 73:845–867PubMedGoogle Scholar
  25. Dale RC, Brilot F, Fagan E et al (2009) Cerebrospinal fluid neopterin in paediatric neurology: a marker of active central nervous system inflammation. Dev Med Child Neurol 51:317–323PubMedGoogle Scholar
  26. Dama E, Cornelie S, Bienvenu Somda M et al (2013) Identification of Glossina palpalis gambiensis specific salivary antigens: towards the development of a serologic biomarker of human exposure to tsetse flies in West Africa. Microbes Infect 15(5):416–427PubMedGoogle Scholar
  27. De Bock M, de Seny D, Meuwis MA et al (2010) Challenges for biomarker discovery in body fluids using SELDI-TOF-MS. J Biomed Biotechnol 2010:906082PubMedGoogle Scholar
  28. De Cock KM, Jaffe HW, Curran JW (2012) The evolving epidemiology of HIV/AIDS. AIDS 26:1205–1213PubMedGoogle Scholar
  29. De Koning HP, Bridges DJ, Burchmore RJ (2005) Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiol Rev 29:987–1020PubMedGoogle Scholar
  30. Degrasse JA, Devos D (2010) A functional proteomic study of the Trypanosoma brucei nuclear pore complex: an informatic strategy. Methods Mol Biol 673:231–238PubMedGoogle Scholar
  31. Degrasse JA, Chait BT, Field MC et al (2008) High-yield isolation and subcellular proteomic characterization of nuclear and subnuclear structures from trypanosomes. Methods Mol Biol 463:77–92PubMedGoogle Scholar
  32. Du Pasquier RA, Jilek S, Kalubi M et al (2012) Marked Increase of the Astrocytic Marker S100B in the Cerebrospinal Fluid of HIV-infected Patients on LPV/r-Monotherapy. AIDS 27:203–210Google Scholar
  33. Edén A, Price RW, Spudich S et al (2007) Immune activation of the central nervous system is still present after >4 years of effective highly active antiretroviral therapy. J Infect Dis 196:1779–1783PubMedGoogle Scholar
  34. Fan J, Gallagher JW, Wu HJ et al (2012) Low molecular weight protein enrichment on mesoporous silica thin films for biomarker discovery. J Vis Exp 62. doi: 10.3791/3876
  35. Ferguson MA, Brimacombe JS, Brown JR et al (1999) The GPI biosynthetic pathway as a therapeutic target for African sleeping sickness. Biochim Biophys Acta 1455:327–340PubMedGoogle Scholar
  36. Ferreira V, Molina MC, Valck C et al (2004) Role of calreticulin from parasites in its interaction with vertebrate hosts. Mol Immunol 40:1279–1291PubMedGoogle Scholar
  37. Foucher AL, McIntosh A, Douce G et al (2006) A proteomic analysis of arsenical drug resistance in Trypanosoma brucei. Proteomics 6:2726–2732PubMedGoogle Scholar
  38. Geiger A, Hirtz C, Bécue T et al (2010) Exocytosis and protein secretion in Trypanosoma. BMC Microbiol 10:20PubMedGoogle Scholar
  39. Grébaut P, Chuchana P, Brizard JP et al (2009) Identification of total and differentially expressed excreted-secreted proteins from Trypanosoma congolense strains exhibiting different virulence and pathogenicity. Int J Parasitol 39:1137–1150PubMedGoogle Scholar
  40. Guerra-Giraldez C, Quijada L, Clayton CE (2002) Compartmentation of enzymes in a microbody, the glycosome, is essential in Trypanosoma brucei. J Cell Sci 115:2651–2658PubMedGoogle Scholar
  41. Güther ML, Lee S, Tetley L et al (2006) GPI-anchored proteins and free GPI glycolipids of procyclic form Trypanosoma brucei are nonessential for growth, are required for colonization of the tsetse fly, and are not the only components of the surface coat. Mol Biol Cell 17:5265–5274PubMedGoogle Scholar
  42. Güther ML, Beattie K, Lamont DJ et al (2009) Fate of glycosylphosphatidylinositol (GPI)-less procyclin and characterization of sialylated non-GPI-anchored surface coat molecules of procyclic-form Trypanosoma brucei. Eukaryot Cell 8:1407–1417PubMedGoogle Scholar
  43. Haddow JD, Poulis B, Haines LR et al (2002) Identification of major soluble salivary gland proteins in teneral Glossina morsitans morsitans. Insect Biochem Mol Biol 32:1045–1053PubMedGoogle Scholar
  44. Hainard A, Tiberti N, Robin X et al (2009) A combined CXCL10, CXCL8 and H-FABP panel for the staging of human African trypanosomiasis patients. PLoS Negl Trop Dis 3:e459PubMedGoogle Scholar
  45. Hainard A, Tiberti N, Robin X et al (2011) Matrix metalloproteinase-9 and intercellular adhesion molecule 1 are powerful staging markers for human African trypanosomiasis. Trop Med Int Health 16:119–126PubMedGoogle Scholar
  46. Hao Z, Kasumba I, Lehane MJ et al (2001) Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci USA 98:12648–12653PubMedGoogle Scholar
  47. Hart SR, Lau KW, Hao Z et al (2009) Analysis of the trypanosome flagellar proteome using a combined electron transfer/collisionally activated dissociation strategy. J Am Soc Mass Spectrom 20:167–175PubMedGoogle Scholar
  48. Hause RJ, Kim HD, Leung KK et al (2011) Targeted protein-omic methods are bridging the gap between proteomic and hypothesis-driven protein analysis approaches. Expert Rev Proteomics 8:565–575PubMedGoogle Scholar
  49. Holmes E (2010) The evolution of metabolic profiling in parasitology. Parasitology 137:1437–1449PubMedGoogle Scholar
  50. Holzmuller P, Biron DG, Courtois P et al (2008a) Virulence and pathogenicity patterns of Trypanosoma brucei gambiense field isolates in experimentally infected mouse: differences in host immune response modulation by secretome and proteomics. Microbes Infect 10:79–86PubMedGoogle Scholar
  51. Holzmuller P, Grébaut P, Brizard JP et al (2008b) “Pathogeno-Proteomics”: toward a new approach of host–vector–pathogen interactions. Ann N Y Acad Sci 1149:66–70PubMedGoogle Scholar
  52. Holzmuller P, Grébaut P, Peltier JB et al (2008c) Secretome of animal trypanosomes. Ann N Y Acad Sci 1149:337–342PubMedGoogle Scholar
  53. Holzmuller P, Grébaut P, Cuny G et al (2010) Tsetse flies, trypanosomes, humans and animals: what is proteomics revealing about their crosstalks? Expert Rev Proteomics 7:113–126PubMedGoogle Scholar
  54. Hu CY, Aksoy S (2006) Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol Microbiol 60:1194–1204PubMedGoogle Scholar
  55. Jenni L, Molyneux DH, Livesey JL et al (1980) Feeding behavior of tsetse flies infected with salivarian trypanosomes. Nature 283:383–385PubMedGoogle Scholar
  56. Juan D, Pazos F, Valencia A (2008) High confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci USA 105:934–939PubMedGoogle Scholar
  57. Kuettel S, Mosimann M, Mäser P et al (2009) Adenosine Kinase of T. b. Rhodesiense identified as the putative target of 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine using chemical proteomics. PLoS Negl Trop Dis 3:e506PubMedGoogle Scholar
  58. Lacomble S, Portman N, Gull K (2009) A protein-protein interaction map of the Trypanosoma brucei paraflagellar rod. PLoS One 4:e7685PubMedGoogle Scholar
  59. Lalmanach G, Boulangé A, Serveau C et al (2002) Congopain from Trypanosoma congolense: drug target and vaccine candidate. Biol Chem 383:739–749PubMedGoogle Scholar
  60. Lefèvre T, Thomas F, Ravel S et al (2007) Trypanosoma brucei brucei induces alteration in the head proteome of the tsetse fly vector Glossina palpalis gambiensis. Insect Mol Biol 16:651–660PubMedGoogle Scholar
  61. Lefèvre T, Roche B, Poulin R et al (2008) Exploiting host compensatory responses: the ‘must’ of manipulation? Trends Parasitol 24:435–439PubMedGoogle Scholar
  62. Lefèvre T, Adamo S, Biron DG et al (2009) How to make someone do something: the diversity and evolution of manipulative strategies in host-parasite interactions. Adv Parasitol 68:45–83PubMedGoogle Scholar
  63. Lehane MJ, Msangi AR (1991) Lectin and peritrophic membrane development in the gut of Glossina m. morsitans and a discussion of their role in protecting the fly against trypanosome infection. Med Vet Entomol 5:495–501PubMedGoogle Scholar
  64. Li JV, Saric J, Wang Y et al (2011) Metabonomic investigation of single and multiple strain Trypanosoma brucei brucei infections. Am J Trop Med Hyg 84:91–98PubMedGoogle Scholar
  65. Libersat F, Delago A, Gal R (2009) Manipulation of host behavior by parasitic insects and insect parasites. Annu Rev Entomol 54:189–207PubMedGoogle Scholar
  66. Lievens S, Eyckerman S, Lemmens I et al (2010) Large-scale protein interactome mapping: strategies and opportunities. Expert Rev Proteomics 7:679–690PubMedGoogle Scholar
  67. Lubega GW, Ochola DO, Prichard RK (2002) Trypanosoma brucei: anti-tubulin antibodies specifically inhibit trypanosome growth in culture. Exp Parasitol 102:134–142PubMedGoogle Scholar
  68. Maclean L, Odiit M, Sternberg JM (2006) Intrathecal cytokine responses in Trypanosoma brucei rhodesiense sleeping sickness patients. Trans R Soc Trop Med Hyg 100:270–275PubMedGoogle Scholar
  69. Manful T, Mulindwa J, Frank FM et al (2010) A search for Trypanosoma brucei rhodesiense diagnostic antigens by proteomic screening and targeted cloning. PLoS One 5:e9630PubMedGoogle Scholar
  70. Matthews KR (2005) The developmental cell biology of Trypanosoma brucei. J Cell Sci 118:283–290PubMedGoogle Scholar
  71. Mercer L, Bowling T, Perales J et al (2011) 2,4-Diaminopyrimidines as potent inhibitors of Trypanosoma brucei and identification of molecular targets by a chemical proteomics approach. PLoS Negl Trop Dis 5:e956PubMedGoogle Scholar
  72. Mina JG, Pan SY, Wansadhipathi NK et al (2009) The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Mol Biochem Parasitol 168:16–23PubMedGoogle Scholar
  73. Moore J (1993) Parasites and the behaviour of biting flies. J Parasitol 79:1–16PubMedGoogle Scholar
  74. Nandan D, Yi T, Lopez M et al (2002) Leishmania EF-1alpha activates the Src homology 2 domain containing tyrosine phosphatase SHP-1 leading to macrophage deactivation. J Biol Chem 277:50190–50197PubMedGoogle Scholar
  75. Nedelkov D (2005) Population proteomics: addressing protein diversity in humans. Expert Rev Proteomics 2:315–324PubMedGoogle Scholar
  76. Nes CR, Singha UK, Liu J et al (2012) Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms. Biochem J 443:267–277PubMedGoogle Scholar
  77. Nett IR, Martin DM, Miranda-Saavedra D et al (2009) The phosphoproteome of bloodstream form Trypanonosoma brucei, causative agent of African sleeping sickness. Mol Cell Proteomics 8:1527–1538PubMedGoogle Scholar
  78. Panigrahi AK, Zíková A, Dalley RA et al (2008) Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteomics 7:534–545PubMedGoogle Scholar
  79. Panigrahi AK, Ogata Y, Zíková A et al (2009) A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9:434–450PubMedGoogle Scholar
  80. Papadopoulos MC, Abel PM, Agranoff D et al (2004) A novel and accurate diagnostic test for human African trypanosomiasis. Lancet 363:1358–1363PubMedGoogle Scholar
  81. Parsons M (2004) Glycosomes: parasites and the divergence of peroxisomal purpose. Mol Microbiol 53:717–724PubMedGoogle Scholar
  82. Parsons M, Nielsen B (1990) Trypanosoma brucei: two-dimensional gel analysis of the major glycosomal proteins during the life cycle. Exp Parasitol 70:276–285PubMedGoogle Scholar
  83. Pearson TW (2001) Procyclins, proteases and proteomics: dissecting trypanosomes in the tsetse fly. Trends Microbiol 9:299–301PubMedGoogle Scholar
  84. Pearson TW, Moloo SK, Jenni L (1987) Culture form and tsetse fly midgut form procyclic Trypanosoma brucei express common proteins. Mol Biochem Parasitol 25:273–278PubMedGoogle Scholar
  85. Pieretti S, Haanstra JR, Mazet M et al (2013) Naphthoquinone derivatives exert their antitrypanosomal activity via a multi-target mechanism. PLoS Negl Trop Dis 7:e2012PubMedGoogle Scholar
  86. Poinsignon A, Cornelie S, Remoue F et al (2007) Human/vector relationships during human African trypanosomiasis: initial screening of immunogenic salivary proteins of Glossina species. Am J Trop Med Hyg 76:327–333PubMedGoogle Scholar
  87. Portman N, Gull K (2012) Proteomics and the Trypanosoma brucei cytoskeleton: advances and opportunities. Parasitology 139:1168–1177PubMedGoogle Scholar
  88. Probst P, Stromberg E, Ghalib HW et al (2001) Identification and characterization of T cell-stimulating antigens from Leishmania by CD4 T cell expression cloning. J Immunol 166:498–505PubMedGoogle Scholar
  89. Roche S, Tiers L, Provansal M et al (2006) Interest of major serum protein removal for Surface-Enhanced Laser Desorption/Ionization – Time Of Flight (SELDI-TOF) proteomic blood profiling. Proteome Sci 4:20PubMedGoogle Scholar
  90. Roditi I, Lehane M (2008) Interactions between trypanosomes and tsetse flies. Curr Opin Microbiol 11:345–351PubMedGoogle Scholar
  91. Rout MP, Field MC (2001) Isolation and characterization of subnuclear compartments from Trypanosoma brucei. Identification of a major repetitive nuclear lamina component. J Biol Chem 276:38261–38271PubMedGoogle Scholar
  92. Roy N, Nageshan RK, Pallavi R et al (2010) Proteomics of Trypanosoma evansi infection in rodents. PLoS One 5:e9796PubMedGoogle Scholar
  93. Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21PubMedGoogle Scholar
  94. Schaub GA (2006) Parasitogenic alterations of vector behaviour. Int J Med Microbiol 296:37–40PubMedGoogle Scholar
  95. Seebeck T, Schaub R, Johner A (2004) cAMP signalling in the kinetoplastid protozoa. Curr Mol Med 4:585–599PubMedGoogle Scholar
  96. Silverman JM, Chan SK, Robinson DP et al (2008) Proteomic analysis of the secretome of Leishmania donovani. Genome Biol 9:R35PubMedGoogle Scholar
  97. Sullivan L, Wall SJ, Carrington M et al (2013) Proteomic selection of immunodiagnostic antigens for human african trypanosomiasis and generation of a prototype lateral flow immunodiagnostic device. PLoS Negl Trop Dis 7:e2087PubMedGoogle Scholar
  98. Tang HY, Beer LA, Speicher DW (2011) In-depth analysis of a plasma or serum proteome using a 4D protein profiling method. Methods Mol Biol 728:47–67PubMedGoogle Scholar
  99. Tiberti N, Hainard A, Lejon V et al (2010) Discovery and verification of osteopontin and Beta-2-microglobulin as promising markers for staging human African trypanosomiasis. Mol Cell Proteomics 9:2783–2795PubMedGoogle Scholar
  100. Tiberti N, Hainard A, Lejon V et al (2012) Cerebrospinal fluid neopterin as marker of the meningo-encephalitic stage of Trypanosoma brucei gambiense sleeping sickness. PLoS One 7:e40909PubMedGoogle Scholar
  101. Tiberti N, Lejon V, Hainard A et al (2013a) Neopterin Is a Cerebrospinal Fluid Marker for Treatment Outcome Evaluation in Patients Affected by Trypanosoma brucei gambiense Sleeping Sickness. PLoS Negl Trop Dis 7:e2088PubMedGoogle Scholar
  102. Tiberti N, Matovu E, Hainard A et al (2013b) New biomarkers for stage determination in Trypanosoma brucei rhodesiense sleeping sickness patients. Clin Transl Med 2:1PubMedGoogle Scholar
  103. Uetz P, Dong YA, Zeretzke C et al (2006) Herpesviral protein networks and their interaction with the human proteome. Science 311:239–242PubMedGoogle Scholar
  104. Urbaniak MD, Guther ML, Ferguson MA (2012) Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One 7:e36619PubMedGoogle Scholar
  105. Valcour V, Chalermchai T, Sailasuta N et al (2012) Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis 206:275–282PubMedGoogle Scholar
  106. Van Den Abbeele J, Caljon G, De Ridder K et al (2010) Trypanosoma brucei modifies the tsetse salivary composition, altering the fly feeding behavior that favors parasite transmission. PLoS Pathog 6:e1000926Google Scholar
  107. Van Deursen FJ, Thornton DJ, Matthews KR (2003) A reproducible protocol for analysis of the proteome of Trypanosoma brucei by 2-dimensional gel electrophoresis. Mol Biochem Parasitol 128:107–110PubMedGoogle Scholar
  108. van Hellemond JJ, Opperdoes FR, Tielens AG (2005) The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem Soc Trans 33:967–971PubMedGoogle Scholar
  109. Vertommen D, Van Roy J, Szikora JP et al (2008) Differential expression of glycosomal and mitochondrial proteins in the two major life-cycle stages of Trypanosoma brucei. Mol Biochem Parasitol 158:189–201PubMedGoogle Scholar
  110. Vincent IM, Creek DJ, Burgess K et al (2012) Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. PLoS Negl Trop Dis 6:e1618PubMedGoogle Scholar
  111. Yang PY, Wang M, He CY et al (2012a) Proteomic profiling and potential cellular target identification of K11777, a clinical cysteine protease inhibitor, in Trypanosoma brucei. Chem Commun (Camb) 48:835–837Google Scholar
  112. Yang PY, Wang M, Liu K et al (2012b) Parasite-based screening and proteome profiling reveal orlistat, an FDA-approved drug, as a potential anti Trypanosoma brucei agent. Chemistry 18:8403–8413PubMedGoogle Scholar
  113. Zhang CG, Chromy BA, McCutchen-Maloney SL (2005) Host-pathogen interactions: a proteomic view. Expert Rev Proteomics 2:187–202PubMedGoogle Scholar
  114. Zhou Q, Gheiratmand L, Chen Y et al (2010) A comparative proteomic analysis reveals a new bi-lobe protein required for bi-lobe duplication and cell division in Trypanosoma brucei. PLoS One 5:e9660PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Philippe Holzmuller
    • 1
    Email author
  • Pascal Grébaut
    • 1
  • Anne Geiger
    • 1
  1. 1.UMR CIRAD-IRD InterTryp: Interactions Hôtes-Vecteurs-Parasites dans les infections par TrypanosomatidaeMontpellier Cedex 5France

Personalised recommendations