Advertisement

Adaptive Immunity and Trypanosomiasis-Driven B-Cell Destruction

  • Stefan MagezEmail author
  • Magdalena Radwanska
Chapter

Abstract

African Trypanosomiasis is an excellent model system to study immune escape by invading extracellular pathogens. Being under continuous attack by the host humoral response, trypanosomes developed a system of antigenic variation of their surface coat in order to evade antibody-mediated immune destruction. In-depth studies on the mechanisms of antigenic variation have resulted in the understanding of both structural and genetic aspects of the surface coat organization of trypanosomes, and the variant-specific glycoproteins (VSG) itself, i.e., the protein that provides the interface between the parasite and the host immune system (see Chaps. 1 and 3). To date, the current hypothesis of VSG-mediated antibody escape implies that during infection the host is capable of mounting an ever changing antibody repertoire, which allows to target in a specific manner each new trypanosome wave. In this chapter, a number of recent and new insights will be discussed that highlight the complexity of this system. Indeed, experimental data obtained in rodent T. brucei models suggest that anti-VSG responses are very short lived, and no effective memory is mounted during infection against the successive waves of occurring VATs. In addition, active destruction of the host B-cell compartment occurs during infection, affecting both trypanosome specific and non-specific B-cell memory. These finding will be discussed in the context of the long string of vaccine failure results that have hampered the initiation of an effective vaccine program for trypanosomiasis. Finally, this chapter will also provide new insights into antibody engineering that allow interfering with trypanosome biology in ways that are not part of the natural evolutionary pressure. Hence, possible new tools can be developed that can help in a sustainable long-term battle against both human and animal trypanosomiasis.

Keywords

Antigenic Variation Human African Trypanosomiasis Bloodstream Form Variant Surface Glycoprotein Invariant Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Askonas BA, Corsini AC, Clayton CE et al (1979) Functional depletion of T- and B-memory cells and other lymphoid cell subpopulations-during trypanosomiasis. Immunology 36:313–321PubMedGoogle Scholar
  2. Authié E, Duvallet G, Robertson C et al (1993a) Antibody responses to a 33 kDa cysteine protease of Trypanosoma congolense: relationship to ‘trypanotolerance’ in cattle. Parasite Immunol 15(8):465–474PubMedCrossRefGoogle Scholar
  3. Authié E, Muteti DK, Williams DJ (1993b) Antibody responses to invariant antigens of Trypanosoma congolense in cattle of differing susceptibility to trypanosomiasis. Parasite Immunol 15(2):101–111, Erratum in: Parasite Immunol. 15(3):185PubMedCrossRefGoogle Scholar
  4. Authie E, Boulange A, Muteti D et al (2001) Immunisation of cattle with cysteine proteinases of Trypanosoma congolense: targeting the disease rather than the parasite. Int J Parasitol 31:1429–1433PubMedCrossRefGoogle Scholar
  5. Baral TN, Magez S, Stijlemans B et al (2006) Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Med Sci 22:914–916Google Scholar
  6. Baral TN, De Baetselier P, Brombacher F, Magez S (2007) Control of Trypanosoma evansi infection is IgM mediated and does not require a type I inflammatory response. J Infect Dis 195:1513–1520PubMedCrossRefGoogle Scholar
  7. Barry JD, Hajduk SL, Vickerman K et al (1979) Detection of multiple variable antigen types in metacyclic populations of Trypanosoma brucei. Trans R Soc Trop Med Hyg 73:205–208PubMedCrossRefGoogle Scholar
  8. Barry JD, Crowe JS, Vickerman K (1983) Instability of the Trypanosoma brucei rhodesiense metacyclic variable antigen repertoire. Nature 306:699–701PubMedCrossRefGoogle Scholar
  9. Barry JD, Graham SV, Fotheringham M et al (1998) VSG gene control and infectivity strategy of metacyclic stage Trypanosoma brucei. Mol Biochem Parasitol 91:93–105PubMedCrossRefGoogle Scholar
  10. Bockstal V, Guirnalda P, Caljon G et al (2011) T. brucei infection reduces B lymphopoiesis in bone marrow and truncates compensatory splenic lymphopoiesis through transitional B-cell apoptosis. PLoS Pathog 7:e1002089PubMedCrossRefGoogle Scholar
  11. Caljon G, Stijlemans B, Saerens D et al (2012) Affinity is an important determinant of the anti-trypanosome activity of nanobodies. PLoS Negl Trop Dis 6:e1902PubMedCrossRefGoogle Scholar
  12. Clayton CE, Ogilvie BM, Askonas BA (1979) Trypanosoma brucei infection in nude mice: B lymphocyte function is suppressed in the absence of T lymphocytes. Parasite Immunol 1:39–48PubMedCrossRefGoogle Scholar
  13. Cornelissen AW, Bakkeren GA, Barry JD et al (1985) Characteristics of trypanosome variant antigen genes active in the tsetse fly. Nucleic Acids Res 13:4661–4676PubMedCrossRefGoogle Scholar
  14. Corsini AC, Clayton C, Askonas BA et al (1977) Suppressor cells and loss of B-cell potential in mice infected with Trypanosoma brucei. Clin Exp Immunol 29:122–131PubMedGoogle Scholar
  15. Crowe JS, Barry JD, Luckins AG et al (1983) All metacyclic variable antigen types of Trypanosoma congolense identified using monoclonal antibodies. Nature 306:389–391PubMedCrossRefGoogle Scholar
  16. Darji A, Beschin A, Sileghem M et al (1996) In vitro simulation of immunosuppression caused by Trypanosoma brucei: active involvement of gamma interferon and tumor necrosis factor in the pathway of suppression. Infect Immun 64:1937–1943PubMedGoogle Scholar
  17. De Gee AL, Levine RF, Mansfield JM (1988) Genetics of resistance to the African trypanosomes. VI. Heredity of resistance and variable surface glycoprotein-specific immune responses. J Immunol 140:283–288PubMedGoogle Scholar
  18. Engstler M, Pfohl T, Herminghaus S et al (2007) Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131:505–515PubMedCrossRefGoogle Scholar
  19. Els Conrath K, Lauwereys M, Wyns L, Muyldermans S (2001) Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem 276(10):7346–7350PubMedCrossRefGoogle Scholar
  20. Esser KM, Schoenbechler MJ, Gingrich JB (1982) Trypanosoma rhodesiense blood forms express all antigen specificities relevant to protection against metacyclic (insect form) challenge. J Immunol 129(4):1715–1718PubMedGoogle Scholar
  21. Gaithuma AK, Karanja SM, Ngotho M et al (2012) Lipid metabolism and other metabolic changes in vervet monkeys experimentally infected with Trypanosoma brucei rhodesiense. J Med Primatol 41(2):75–81PubMedCrossRefGoogle Scholar
  22. Gingrich JB, Ward RA, Macken LM et al (1981) Some phenomena associated with the development of Trypanosoma brucei rhodesiense infections in the tsetse fly, Glossina morsitans. Am J Trop Med Hyg 30:570–574PubMedGoogle Scholar
  23. Greenwood BM, Whittle HC, Molyneux DH (1973) Immunosuppression in Gambian trypanosomiasis. Trans R Soc Trop Med Hyg 67:846–850PubMedCrossRefGoogle Scholar
  24. Guirnalda P, Murphy NB, Nolan D et al (2007) Anti-Trypanosoma brucei activity in Cape buffalo serum during the cryptic phase of parasitemia is mediated by antibodies. Int J Parasitol 37:1391–1399PubMedCrossRefGoogle Scholar
  25. Gull K (2003) Host-parasite interactions and trypanosome morphogenesis: a flagellar pocketful of goodies. Curr Opin Microbiol 6:365–370PubMedCrossRefGoogle Scholar
  26. Hanotte O, Ronin Y, Agaba M et al (2003) Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N’Dama and susceptible East African Boran cattle. Proc Natl Acad Sci USA 100:7443–7448PubMedCrossRefGoogle Scholar
  27. Higgins MK, Tkachenko O, Brown A, Reed J, Raper J, Carrington M (2013) Structure of the trypanosome haptoglobin-hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc Natl Acad Sci USA 110(5):1905–1910. doi: 10.1073/pnas.1214943110 PubMedCrossRefGoogle Scholar
  28. Holland WG, Do TT, Huong NT et al (2003) The effect of Trypanosoma evansi infection on pig performance and vaccination against classical swine fever. Vet Parasitol 111:115–123PubMedCrossRefGoogle Scholar
  29. Hudson KM, Byner C, Freeman J et al (1976) Immunodepression, high IgM levels and evasion of the immune response in murine trypanosomiasis. Nature 264:256–258PubMedCrossRefGoogle Scholar
  30. Jackson DG, Windle HJ, Voorheis HP (1993) The identification, purification, and characterization of two invariant surface glycoproteins located beneath the surface coat barrier of bloodstream forms of Trypanosoma brucei. J Biol Chem 268:8085–8095PubMedGoogle Scholar
  31. Jarvinen JA, Dalmasso A (1977) Trypanosoma musculi infections in normocomplementemic, C5-deficient, and C3-depleted mice. Infect Immun 16:557–563PubMedGoogle Scholar
  32. Kamanga-Sollo EI, Musoke AJ, Nantulya VM et al (1991) Differences between N’Dama and Boran cattle in the ability of their peripheral blood leucocytes to bind antibody-coated trypanosomes. Acta Trop 49(2):109–117PubMedCrossRefGoogle Scholar
  33. Kateregga J, Lubega GW, Lindblad EB et al (2012) Effect of adjuvants on the humoral immune response to congopain in mice and cattle. BMC Vet Res 8:63PubMedCrossRefGoogle Scholar
  34. Lalmanach G, Boulange A, Serveau C et al (2002) Congopain from Trypanosoma congolense: drug target and vaccine candidate. Biol Chem 383:739–749PubMedCrossRefGoogle Scholar
  35. Le Ray D, Barry JD, Vickerman K (1978) Antigenic heterogeneity of metacyclic forms of Trypanosoma brucei. Nature 273(5660):300–302PubMedCrossRefGoogle Scholar
  36. Levine RF, Mansfield JM (1984) Genetics of resistance to the african trypanosomes III variant-specific antibody responses of H-2-compatible resistant and susceptible mice. J Immunol 133:1564–1569PubMedGoogle Scholar
  37. Lutje V, Taylor KA, Kennedy D et al (1996) Trypanosoma congolense: a comparison of T-cell-mediated responses in lymph nodes of trypanotolerant and trypanosusceptible cattle during primary infection. Exp Parasitol 84(3):320–329PubMedCrossRefGoogle Scholar
  38. Lutz C, Ledermann B, Kosco-Vilbois MH et al (1998) IgD can largely substitute for loss of IgM function in B cells. Nature 393:797–801PubMedCrossRefGoogle Scholar
  39. MacAskill JA, Holmes PH, Whitelaw DD et al (1980) Immunological clearance of 75Se-labelled Trypanosoma brucei in mice.II. Mechanisms in immune animals. Immunology 40:629–635PubMedGoogle Scholar
  40. MacAskill JA, Holmes PH, Whitelaw DD et al (1983) Immune mechanisms in C57B1 mice genetically resistant to Trypanosoma congolense infection. II. Aspects of the humoral response. Parasite Immunol 5:577–586PubMedCrossRefGoogle Scholar
  41. Magez S, Radwanska M (2009) African trypanosomiasis and antibodies: implications for vaccination, therapy and diagnosis. Future Microbiol 4:1075–1087PubMedCrossRefGoogle Scholar
  42. Magez S, Stijlemans B, Radwanska M et al (1998) The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. J Immunol 160:1949–1956PubMedGoogle Scholar
  43. Magez S, Radwanska M, Beschin A et al (1999) Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun 67:3128–3132PubMedGoogle Scholar
  44. Magez S, Radwanska M, Drennan M et al (2006) Interferon-gamma and nitric oxide in combination with antibodies are key protective host immune factors during trypanosoma congolense Tc13 Infections. J Infect Dis 193:1575–1583PubMedCrossRefGoogle Scholar
  45. Magez S, Schwegmann A, Atkinson R et al (2008) The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog 4:e1000122PubMedCrossRefGoogle Scholar
  46. Mitchell LA, Pearson TW (1983) Antibody responses induced by immunization of inbred mice susceptible and resistant to African trypanosomes. Infect Immun 40:894–902PubMedGoogle Scholar
  47. Mkunza F, Olaho WM, Powell CN (1995) Partial protection against natural trypanosomiasis after vaccination with a flagellar pocket antigen from Trypanosoma brucei rhodesiense. Vaccine 13:151–154PubMedCrossRefGoogle Scholar
  48. Morrison WI, Roelants GE, Mayor-Withey KS et al (1978) Susceptibility of inbred strains of mice to Trypanosoma congolense: correlation with changes in spleen lymphocyte populations. Clin Exp Immunol 32:25–40PubMedGoogle Scholar
  49. Murray PK, Jennings FW, Murray M et al (1974a) The nature of immunosuppression in Trypanosoma brucei infections in mice. I. The role of the macrophage. Immunology 27:815–824PubMedGoogle Scholar
  50. Murray PK, Jennings FW, Murray M et al (1974b) The nature of immunosuppression in Trypanosoma brucei infections in mice.II. The role of the T and B lymphocytes. Immunology 27:825–840PubMedGoogle Scholar
  51. Muyldermans S, Baral TN, Retamozzo VC et al (2009) Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 128:178–183PubMedCrossRefGoogle Scholar
  52. Mwangi DM, Munyua WK, Nyaga PN (1990) Immunosuppression in caprine trypanosomiasis: effects of acute Trypanosoma congolense infection on antibody response to anthrax spore vaccine. Trop Anim Health Prod 22:95–100PubMedCrossRefGoogle Scholar
  53. Naessens J (2006) Bovine trypanotolerance: a natural ability to prevent severe anaemia and haemophagocytic syndrome? Int J Parasitol 36(5):521–528PubMedCrossRefGoogle Scholar
  54. Naessens J, Leak SG, Kennedy DJ et al (2003) Responses of bovine chimaeras combining trypanosomosis resistant and susceptible genotypes to experimental infection with Trypanosoma congolense. Vet Parasitol 111:125–142PubMedCrossRefGoogle Scholar
  55. Nantulya VM, Doyle JJ, Jenni L (1980) Studies on Trypanosoma (nannomonas) congolense III.Antigenic variation in three cyclically transmitted stocks. Parasitology 80:123–131PubMedCrossRefGoogle Scholar
  56. Ngotho M, Kagira JM, Kariuki C et al (2011) Influence of trypanocidal therapy on the haematology of vervet monkeys experimentally infected with Trypanosoma brucei rhodesiense. Acta Trop 19(1):14–18CrossRefGoogle Scholar
  57. Nolan DP, Jackson DG, Windle HJ et al (1997) Characterization of a novel, stage-specific, invariant surface protein in Trypanosoma brucei containing an internal, serine-rich, repetitive motif. J Biol Chem 272:29212–29221PubMedCrossRefGoogle Scholar
  58. O’Gorman GM, Park SD, Hill EW et al (2006) Cytokine mRNA profiling of peripheral blood mononuclear cells from trypanotolerant and trypanosusceptible cattle infected with Trypanosoma congolense. Physiol Genomics 28(1):53–61PubMedCrossRefGoogle Scholar
  59. Pan W, Ogunremi O, Wei G et al (2006) CR3 (CD11b/CD18) is the major macrophage receptor for IgM antibody-mediated phagocytosis of African trypanosomes: diverse effect on subsequent synthesis of tumor necrosis factor alpha and nitric oxide. Microbes Infect 8:1209–1218PubMedCrossRefGoogle Scholar
  60. Phillips JA, Romball CG, Hobbs M et al (1996) CD4+ T cell activation and tolerance induction in B cell knockout mice. J Exp Med 183:1339–1344PubMedCrossRefGoogle Scholar
  61. Pinder M, Libeau G, Hirsch W et al (1984) Anti-trypanosome specific immune responses in bovids of differing susceptibility to African trypanosomiasis. Immunology 51:247–258PubMedGoogle Scholar
  62. Radwanska M, Magez S, Dumont N et al (2000a) Antibodies raised against the flagellar pocket fraction of Trypanosoma brucei preferentially recognize HSP60 in cDNA expression library. Parasite Immunol 22:639–650PubMedCrossRefGoogle Scholar
  63. Radwanska M, Magez S, Michel A et al (2000b) Comparative analysis of antibody responses against HSP60, invariant surface glycoprotein 70, and variant surface glycoprotein reveals a complex antigen-specific pattern of immunoglobulin isotype switching during infection by Trypanosoma brucei. Infect Immun 68:848–860PubMedCrossRefGoogle Scholar
  64. Radwanska M, Guirnalda P, De Trez C (2008) Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses. PLoS Pathog 4:e1000078PubMedCrossRefGoogle Scholar
  65. Reinitz DM, Mansfield JM (1990) T-cell-independent and T-cell-dependent B-cell responses toexposed variant surface glycoprotein epitopes in trypanosome-infected mice. Infect Immun 58:2337–2342PubMedGoogle Scholar
  66. Rurangirwa FR, Musoke AJ, Nantulya VM (1983) Immune depression in bovine trypanosomiasis: effects of acute and chronic Trypanosoma congolense and chronic Trypanosoma vivax infections on antibody response to Brucella abortus vaccine. Parasite Immunol 5:267–276PubMedCrossRefGoogle Scholar
  67. Sendashonga CN, Black SJ (1982) Humoral responses against Trypanosoma brucei variable surface antigen is induced by degenerating parasites. Parasite Immunol 4:245–257PubMedCrossRefGoogle Scholar
  68. Sharpe RT, Langley AM, Mowat GN et al (1982) Immunosuppression in bovine trypanosomiasis: response of cattle infected with Trypanosoma congolense to foot-and-mouth disease vaccination and subsequent live virus challenge. Res Vet Sci 32:289–293PubMedGoogle Scholar
  69. Shi M, Wei G, Pan W et al (2005) Impaired Kupffer cells in highly susceptible mice infected with Trypanosoma congolense. Infect Immun 73:8393–8396PubMedCrossRefGoogle Scholar
  70. Sileghem M, Darji A, Hamers R et al (1989) Dual role of macrophages in the suppression of interleukin 2 production and interleukin 2 receptor expression in trypanosome-infected mice. Eur J Immunol 19:829–835PubMedCrossRefGoogle Scholar
  71. Sileghem M, Flynn JN, Logan-Henfrey L et al (1994) Tumour necrosis factor production by monocytes from cattle infected with Trypanosoma (Duttonella) vivax and Trypanosoma (Nannomonas) congolense: possible association with severity of anaemia associated with the disease. Parasite Immunol 16:51–54PubMedCrossRefGoogle Scholar
  72. Steverding D, Stierhof YD, Chaudhri M et al (1994) ESAG 6 and 7 products of Trypanosoma brucei form a transferrin binding protein complex. Eur J Cell Biol 64:78–87PubMedGoogle Scholar
  73. Stijlemans B, Conrath K, Cortez-Retamozo V et al (2004) Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J Biol Chem 279:1256–1261PubMedCrossRefGoogle Scholar
  74. Stijlemans B, Baral TN, Guilliams M et al (2007) A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology. J Immunol 179:4003–4014PubMedGoogle Scholar
  75. Stijlemans B, Caljon G, Natesan SKA et al (2011) High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathog 7:e1002072PubMedCrossRefGoogle Scholar
  76. Taylor KA (1998) Immune responses of cattle to African trypanosomes: protective or pathogenic? Int J Parasitol 28(2):219–240PubMedCrossRefGoogle Scholar
  77. Taylor KA, Lutje V, Kennedy D et al (1996) Trypanosoma congolense: B-lymphocyte responses differ between trypanotolerant and trypanosusceptible cattle. Exp Parasitol 83:106–116PubMedCrossRefGoogle Scholar
  78. Tran T, Claes F, Dujardin JC et al (2006) The invariant surface glycoprotein ISG75 gene family consists of two main groups in the Trypanozoon subgenus. Parasitology 133:613–621PubMedCrossRefGoogle Scholar
  79. Tran T, Buscher P, Vandenbussche G et al (2008) Heterologous expression, purification and characterisation of the extracellular domain of trypanosome invariant surface glycoprotein ISG75. J Biotechnol 135:247–254PubMedCrossRefGoogle Scholar
  80. Uzonna JE, Kaushik RS, Gordon JR et al (1999) Cytokines and antibody responses during Trypanosoma congolense infections in two inbred mouse strains that differ in resistance. Parasite Immunol 21:57–71PubMedCrossRefGoogle Scholar
  81. Van Meirvenne N, Janssens PG, Magnus E (1975a) Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. I. Rationalization of the experimental approach. Ann Soc Belg Med Trop 55:1–23PubMedGoogle Scholar
  82. Van Meirvenne N, Janssens PG, Magnus E et al (1975b) Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. II. Comparative studies on two antigenic-type collections. Ann Soc Belg Med Trop 55:25–30PubMedGoogle Scholar
  83. Vanhollebeke B, De Muylder G, Nielsen MJ et al (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320:677–681PubMedCrossRefGoogle Scholar
  84. Vickerman K (1985) Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull 41:105–114PubMedGoogle Scholar
  85. Vincke C, Loris R, Saerens D et al (2009) General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284:3273–3284PubMedCrossRefGoogle Scholar
  86. Whitelaw DD, Scott JM, Reid HW et al (1979) Immunosuppression in bovine trypanosomiasis: studies with louping-ill vaccine. Res Vet Sci 26:102–107PubMedGoogle Scholar
  87. Williams DJ, Taylor K, Newson J et al (1996) The role of anti-variable surface glycoprotein antibody responses in bovine trypanotolerance. Parasite Immunol 18(4):209–218PubMedCrossRefGoogle Scholar
  88. Ziegelbauer K, Overath P (1992) Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei. J Biol Chem 267:10791–10796PubMedGoogle Scholar
  89. Ziegelbauer K, Multhaup G, Overathn P (1992) Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of Trypanosoma brucei. J Biol Chem 267:10797–10803PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Laboratory for Cellular and Molecular ImmunologyVrije Universiteit BrusselsBrusselsBelgium
  2. 2.VIB Department of Structural BiologyBrusselsBelgium
  3. 3.Science EuropeBrusselsBelgium

Personalised recommendations