Bridging Innate and Adaptive Immunity in African Trypanosomiasis

  • John M. MansfieldEmail author
  • Donna M. Paulnock
  • Gina M. Hedberg


Infection of man and domestic animals with Brucei group African trypanosomes results in a fatal disease. The immunobiological events that underlie temporal host resistance and susceptibility during an infection are complex but informative, because the parasites activate and engage nearly every element of the host innate and adaptive immune system. The ability of trypanosomes to undergo extensive antigenic variation provides a means to escape adaptive immunity, but these protozoan pathogens also activate and regulate many elements of the host immune response to their own end. This chapter highlights the trypanosome elements that bridge innate and adaptive immune responses in the infected mammalian host: the pathogen-associated molecular patterns (PAMPs) that trigger the innate immune response; the associated pattern recognition receptors (PRRs) on innate immune cells and subcellular signaling events that are activated; the resulting pattern of pro-inflammatory gene expression that shapes the nascent adaptive immune response; and, the downstream elements that ultimately cause host resistance to fail. The chapter concludes with promising new approaches, informed by recent studies of immunological memory, aimed at protecting trypanosome infected hosts against a broad range of antigenic variants.


Innate Immune System Host Resistance Innate Immune Cell Trypanosome Infection African Trypanosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amit I, Garber M, Chevrier N, Leite A, Donner Y, Eisenhaure T, Guttman M, Grenier J, Li W, Zuk O, Schubert L, Birditt B, Shay T, Goren A, Zhang X, Smith Z, Deering R, McDonald R, Cabili M, Bernstein B, Rinn J, Meissner A, Root D, Hacohen N, Regev A (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326(5950):257–263PubMedCrossRefGoogle Scholar
  2. Barkhuizen M, Magez S, Atkinson RA, Brombacher F (2007) Interleukin-12p70-dependent interferon- gamma production is crucial for resistance in African trypanosomiasis. J Infect Dis 196(8):1253–1260PubMedCrossRefGoogle Scholar
  3. Barkhuizen M, Magez S, Ryffel B, Brombacher F (2008) Interleukin-12p70 deficiency increases survival and diminishes pathology in Trypanosoma congolense infection. J Infect Dis 198(9):1284–1291PubMedCrossRefGoogle Scholar
  4. Barry JD, Turner CM (1991) The dynamics of antigenic variation and growth of African trypanosomes. Parasitol Today 7(8):207–211PubMedCrossRefGoogle Scholar
  5. Barry JD, Hall JP, Plenderleith L (2012) Genome hyperevolution and the success of a parasite. Ann N Y Acad Sci 1267:11–17PubMedCrossRefGoogle Scholar
  6. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Bohme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DM, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CM, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309(5733):416–422PubMedCrossRefGoogle Scholar
  7. Blum ML, Down JA, Gurnett AM, Carrington M, Turner MJ, Wiley DC (1993) A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature 362(6421):603–609PubMedCrossRefGoogle Scholar
  8. Bockstal V, Geurts N, Magez S (2011a) Acute disruption of bone marrow B lymphopoiesis and apoptosis of transitional and marginal zone B cells in the spleen following a blood-stage Plasmodium chabaudi infection in mice. J Parasitol Res 2011:534697Google Scholar
  9. Bockstal V, Guirnalda P, Caljon G, Goenka R, Telfer JC, Frenkel D, Radwanska M, Magez S, Black SJ (2011b) T. brucei infection reduces B lymphopoiesis in bone marrow and truncates compensatory splenic lymphopoiesis through transitional B-cell apoptosis. PLoS Pathog 7(6):e1002089PubMedCrossRefGoogle Scholar
  10. Bojarova P, Denehy E, Walker I, Loft K, De Souza DP, Woo LW, Potter BV, McConville MJ, Williams SJ (2008) Direct evidence for ArO-S bond cleavage upon inactivation of Pseudomonas aeruginosa arylsulfatase by aryl sulfamates. Chembiochem 9(4):613–623PubMedCrossRefGoogle Scholar
  11. Bowdish DM, Gordon S (2009) Conserved domains of the class A scavenger receptors: evolution and function. Immunol Rev 227(1):19–31PubMedCrossRefGoogle Scholar
  12. Bowdish DM, Sakamoto K, Kim MJ, Kroos M, Mukhopadhyay S, Leifer CA, Tryggvason K, Gordon S, Russell DG (2009) MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog 5(6):e1000474PubMedCrossRefGoogle Scholar
  13. Carrington M, Miller N, Blum M, Roditi I, Wiley D, Turner M (1991a) Variant specific glycoprotein of Trypanosoma brucei consists of two domains each having an independently conserved pattern of cysteine residues. J Mol Biol 221:823–835PubMedCrossRefGoogle Scholar
  14. Carrington M, Walters D, Webb H (1991b) The biology of the glycosylphosphatidylinositol-specific phospholipase C of Trypanosoma brucei. Cell Biol Int Rep 15:1101–1114PubMedCrossRefGoogle Scholar
  15. Carrington M, Carnall N, Crow MS, Gaud A, Redpath MB, Wasunna CL, Webb H (1998) The properties and function of the glycosylphosphatidylinositol-phospholipase C in Trypanosoma brucei. Mol Biochem Parasitol 91(1):153–164PubMedCrossRefGoogle Scholar
  16. Chattopadhyay A, Jones NG, Nietlispach D, Nielsen PR, Voorheis HP, Mott HR, Carrington M (2005) Structure of the C-terminal domain from Trypanosoma brucei variant surface glycoprotein MITat1.2. J Biol Chem 280(8):7228–7235PubMedCrossRefGoogle Scholar
  17. Coller SP, Paulnock DM (2001) Signaling pathways initiated in macrophages after engagement of type A scavenger receptors. J Leukoc Biol 70(1):142–148PubMedGoogle Scholar
  18. Coller SP, Mansfield JM, Paulnock DM (2003) Glycosylinositolphosphate soluble variant surface glycoprotein inhibits IFN-gamma-induced nitric oxide production via reduction in STAT1 phosphorylation in African trypanosomiasis. J Immunol 171(3):1466–1472PubMedGoogle Scholar
  19. Cross GA (1975) Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71:393–417PubMedCrossRefGoogle Scholar
  20. Dagenais TR, Demick KP, Bangs JD, Forest KT, Paulnock DM, Mansfield JM (2009a) T-cell responses to the trypanosome variant surface glycoprotein are not limited to hypervariable subregions. Infect Immun 77(1):141–151PubMedCrossRefGoogle Scholar
  21. Dagenais TR, Freeman BE, Demick KP, Paulnock DM, Mansfield JM (2009b) Processing and presentation of variant surface glycoprotein molecules to T cells in African trypanosomiasis. J Immunol 183(5):3344–3355PubMedCrossRefGoogle Scholar
  22. De Gee AL, Sonnenfeld G, Mansfield JM (1985) Genetics of resistance to the African trypanosomes. V. Qualitative and quantitative differences in interferon production among susceptible and resistant mouse strains. J Immunol 134:2723–2726PubMedGoogle Scholar
  23. De Gee AL, Levine RF, Mansfield JM (1988) Genetics of resistance to the African trypanosomes. VI. Heredity of resistance and variable surface glycoprotein-specific immune responses. J Immunol 140(1):283–288PubMedGoogle Scholar
  24. DeGee AL, Mansfield JM (1984) Genetics of resistance to the African trypanosomes. IV. Resistance of radiation chimeras to Trypanosoma rhodesiense infection. Cell Immunol 87(1):85–91PubMedCrossRefGoogle Scholar
  25. Demick K, Paulnock DM, Mansfield JM (2013) Evaluation of extravascular parasite burden in infected animals by use of African trypanosomes constitutively and stably expressing a cytoplasmic eGFP+ marker (submitted for publication)Google Scholar
  26. Dempsey WL, Mansfield JM (1983) Lymphocyte function in experimental African trypanosomiasis. V. Role of antibody and the mononuclear phagocyte system in variant-specific immunity. J Immunol 130(1):405–411PubMedGoogle Scholar
  27. DeWitte-Orr SJ, Collins SE, Bauer CM, Bowdish DM, Mossman KL (2010) An accessory to the ‘Trinity’: SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses. PLoS Pathog 6(3):e1000829PubMedCrossRefGoogle Scholar
  28. Drennan MB, Stijlemans B, Van den Abbeele J, Quesniaux VJ, Barkhuizen M, Brombacher F, De Baetselier P, Ryffel B, Magez S (2005) The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88 dependent. J Immunol 175(4):2501–2509PubMedGoogle Scholar
  29. Field MC, Boothroyd JC (1996) Sequence divergence in a family of variant surface glycoprotein genes from trypanosomes: coding region hypervariability and downstream recombinogenic repeats. J Mol Evol 42(5):500–511PubMedCrossRefGoogle Scholar
  30. Field MC, Menon AK, Cross GA (1991) Developmental variation of glycosylphosphatidylinositol membrane anchors in Trypanosoma brucei. Identification of a candidate biosynthetic precursor of the glycosylphosphatidylinositol anchor of the major procyclic stage surface glycoprotein. J Biol Chem 266(13):8392–8400PubMedGoogle Scholar
  31. Foulds KE, Wu CY, Seder RA (2006) Th1 memory: implications for vaccine development. Immunol Rev 211:58–66PubMedCrossRefGoogle Scholar
  32. Freeman B, Mansfield JM, Paulnock DM (2013) Altered antigen processing and presentation by dendritic cells in chronic African trypanosomiasis (in preparation)Google Scholar
  33. Freymann D, Down J, Carrington M, Roditi I, Turner M, Wiley D (1990) 2.9 Å resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. J Mol Biol 216:141–160PubMedCrossRefGoogle Scholar
  34. Gangloff M, Gay NJ (2008) Baseless assumptions: activation of TLR9 by DNA. Immunity 28(3):293–294PubMedCrossRefGoogle Scholar
  35. Hall JP, Wang H, Barry JD (2013) Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation. PLoS Pathog (in press)Google Scholar
  36. Hanrahan O, Webb H, O’Byrne R, Brabazon E, Treumann A, Sunter JD, Carrington M, Voorheis HP (2009) The glycosylphosphatidylinositol-PLC in Trypanosoma brucei forms a linear array on the exterior of the flagellar membrane before and after activation. PLoS Pathog 5(6):e1000468PubMedCrossRefGoogle Scholar
  37. Hansen JK, Demick KP, Mansfield JM, Forest KT (2007) Conserved regions from Neisseria gonorrhoeae pilin are immunosilent and not immunosuppressive. Infect Immun 75(8):4138–4147PubMedCrossRefGoogle Scholar
  38. Harris TH, Cooney NM, Mansfield JM, Paulnock DM (2006) Signal transduction, gene transcription, and cytokine production triggered in macrophages by exposure to trypanosome DNA. Infect Immun 74(8):4530–4537PubMedCrossRefGoogle Scholar
  39. Harris TH, Mansfield JM, Paulnock DM (2007) CpG oligodeoxynucleotide treatment enhances innate resistance and acquired immunity to African trypanosomes. Infect Immun 75(5):2366–2373PubMedCrossRefGoogle Scholar
  40. Hedberg G, Paulnock D, Mansfield J (2013) CD4+ Th memory cell responses to the variant surface glycoprotein during African trypanosomiasis (submitted for publication)Google Scholar
  41. Hedberg G, Paulnock D, Mansfield J (2013) Induction of cross-variant protective immunity to the African trypanosomes following immunization with conserved C-terminal VSG sequences. (in preparation)Google Scholar
  42. Hertz CJ, Filutowicz H, Mansfield JM (1998) Resistance to the African trypanosomes is IFN-gamma dependent. J Immunol 161(12):6775–6783PubMedGoogle Scholar
  43. Inverso JA, Mansfield JM (1983) Genetics of resistance to the African trypanosomes. II. Differences in virulence associated with VSSA expression among clones of Trypanosoma rhodesiense. J Immunol 130(1):412–417PubMedGoogle Scholar
  44. Kaushik RS, Uzonna JE, Zhang Y, Gordon JR, Tabel H (2000) Innate resistance to experimental African trypanosomiasis: differences in cytokine (TNF-alpha, IL-6, IL-10 and IL-12) production by bone marrow-derived macrophages from resistant and susceptible mice. Cytokine 12(7):1024–1034PubMedCrossRefGoogle Scholar
  45. Leppert BJ, Mansfield JM, Paulnock DM (2007) The soluble variant surface glycoprotein of African trypanosomes is recognized by a macrophage scavenger receptor and induces I kappa B alpha degradation independently of TRAF6-mediated TLR signaling. J Immunol 179(1):548–556PubMedGoogle Scholar
  46. Levine RF, Mansfield JM (1981) Genetics of resistance to African trypanosomes: role of the H-2 locus in determining resistance to infection with Trypanosoma rhodesiense. Infect Immun 34(2):513–518PubMedGoogle Scholar
  47. Levine RF, Mansfield JM (1984) Genetics of resistance to the African trypanosomes. III. Variant-specific antibody responses of H-2-compatible resistant and susceptible mice. J Immunol 133(3):1564–1569PubMedGoogle Scholar
  48. Lopez R, Demick KP, Mansfield JM, Paulnock DM (2008) Type I IFNs play a role in early resistance, but subsequent susceptibility, to the African trypanosomes. J Immunol 181(7):4908–4917PubMedGoogle Scholar
  49. Lucas R, Magez S, De-Leys R, Fransen L, Scheerlinck JP, Rampelberg M, Sablon E, De-Baetselier P (1994) Mapping the lectin-like activity of tumor necrosis factor. Science 263(5148):814–817PubMedCrossRefGoogle Scholar
  50. MacLean L, Odiit M, Sternberg JM (2001) Nitric oxide and cytokine synthesis in human African trypanosomiasis. J Infect Dis 184(8):1086–1090PubMedCrossRefGoogle Scholar
  51. Magez S, Radwanska M (2009) African trypanosomiasis and antibodies: implications for vaccination, therapy and diagnosis. Future Microbiol 4:1075–1087PubMedCrossRefGoogle Scholar
  52. Magez S, Lucas R, Darji A, Songa EB, Hamers R, De Baetselier P (1993) Murine tumour necrosis factor plays a protective role during the initial phase of the experimental infection with Trypanosoma brucei brucei. Parasite Immunol 15(11):635–641PubMedCrossRefGoogle Scholar
  53. Magez S, Geuskens M, Beschin A, del Favero H, Verschueren H, Lucas R, Pays E, de Baetselier P (1997) Specific uptake of tumor necrosis factor-alpha is involved in growth control of Trypanosoma brucei. J Cell Biol 137(3):715–727PubMedCrossRefGoogle Scholar
  54. Magez S, Stijlemans B, Radwanska M, Pays E, Ferguson MA, De Baetselier P (1998) The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. J Immunol 160(4):1949–1956PubMedGoogle Scholar
  55. Magez S, Stijlemans B, Baral T, De Baetselier P (2002) VSG-GPI anchors of African trypanosomes: their role in macrophage activation and induction of infection-associated immunopathology. Microbes Infect 4(9):999–1006PubMedCrossRefGoogle Scholar
  56. Mansfield JM, Olivier M (2010) Immune evasion by parasites. In: Kaufmann SHE, Sher A, Ahmed R, Sacks D (eds) Immunology of infectious diseases, vol 2. ASM, Washington, DC, pp 379–392Google Scholar
  57. Mansfield JM, Paulnock DM (2005) Regulation of innate and acquired immunity in African trypanosomiasis. Parasite Immunol 27(10–11):361–371PubMedCrossRefGoogle Scholar
  58. Marcello L, Menon S, Ward P, Wilkes JM, Jones NG, Carrington M, Barry JD (2007) VSGdb: a database for trypanosome variant surface glycoproteins, a large and diverse family of coiled coil proteins. BMC Bioinformatics 8:143PubMedCrossRefGoogle Scholar
  59. Medvedev AE, Kopydlowski KM, Vogel SN (2000) Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol 164(11):5564–5574PubMedGoogle Scholar
  60. Mensa Wilmot K, Hereld D, Englund PT (1990) Genomic organization, chromosomal localization, and developmentally regulated expression of the glycosyl-phosphatidylinositol-specific phospholipase C of Trypanosoma brucei. Mol Cell Biol 10:720–726PubMedGoogle Scholar
  61. Metcalf P, Blum M, Freymann D, Turner M, Wiley DC (1987) Two variant surface glycoproteins of Trypanosoma brucei of different sequence classes have similar 6 A resolution X-ray structures. Nature 325:84–86PubMedCrossRefGoogle Scholar
  62. Namangala B, Brys L, Magez S, De Baetselier P, Beschin A (2000a) Trypanosoma brucei brucei infection impairs MHC class II antigen presentation capacity of macrophages. Parasite Immunol 22(7):361–370PubMedCrossRefGoogle Scholar
  63. Namangala B, de Baetselier P, Brijs L, Stijlemans B, Noel W, Pays E, Carrington M, Beschin A (2000b) Attenuation of Trypanosoma brucei is associated with reduced immunosuppression and concomitant production of Th2 lymphokines. J Infect Dis 181(3):1110–1120PubMedCrossRefGoogle Scholar
  64. Paulnock DM, Coller SP (2001) Analysis of macrophage activation in African trypanosomiasis. J Leukoc Biol 69(5):685–690PubMedGoogle Scholar
  65. Paulnock DM, Smith C, Mansfield JM (1989) Antigen presenting cell function in African trypanosomiasis. Alan R Liss, New York, pp 135–144Google Scholar
  66. Paulnock DM, Freeman BE, Mansfield JM (2010) Modulation of innate immunity by African trypanosomes. Parasitology 137(14):2051–2063PubMedCrossRefGoogle Scholar
  67. Radwanska M, Guirnalda P, De Trez C, Ryffel B, Black S, Magez S (2008) Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses. PLoS Pathog 4(5):e1000078PubMedCrossRefGoogle Scholar
  68. Reinitz DM, Aizenstein BD, Mansfield JM (1992) Variable and conserved structural elements of trypanosome variant surface glycoproteins. Mol Biochem Parasitol 51(1):119–132PubMedCrossRefGoogle Scholar
  69. Salmon D, Vanwalleghem G, Morias Y, Denoeud J, Krumbholz C, Lhomme F, Bachmaier S, Kador M, Gossmann J, Dias FB, De Muylder G, Uzureau P, Magez S, Moser M, De Baetselier P, Van Den Abbeele J, Beschin A, Boshart M, Pays E (2012) Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 337(6093):463–466PubMedCrossRefGoogle Scholar
  70. Schleifer KW, Mansfield JM (1993) Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J Immunol 151(10):5492–5503PubMedGoogle Scholar
  71. Schleifer KW, Filutowicz H, Schopf LR, Mansfield JM (1993) Characterization of T helper cell responses to the trypanosome variant surface glycoprotein. J Immunol 150(7):2910–2919PubMedGoogle Scholar
  72. Schopf LR, Filutowicz H, Bi XJ, Mansfield JM (1998) Interleukin-4-dependent immunoglobulin G1 isotype switch in the presence of a polarized antigen-specific Th1-cell response to the trypanosome variant surface glycoprotein. Infect Immun 66(2):451–461PubMedGoogle Scholar
  73. Schwede A, Jones N, Engstler M, Carrington M (2011) The VSG C-terminal domain is inaccessible to antibodies on live trypanosomes. Mol Biochem Parasitol 175(2):201–204PubMedCrossRefGoogle Scholar
  74. Sprent J (1994) T and B memory cells. Cell 76(2):315–322PubMedCrossRefGoogle Scholar
  75. Sternberg JM, Rodgers J, Bradley B, Maclean L, Murray M, Kennedy PG (2005) Meningoencephalitic African trypanosomiasis: brain IL-10 and IL-6 are associated with protection from neuro-inflammatory pathology. J Neuroimmunol 167(1–2):81–89PubMedCrossRefGoogle Scholar
  76. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, Khoury JE, Golenbock DT, Moore KJ (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2):155–161PubMedCrossRefGoogle Scholar
  77. Stijlemans B, Baral TN, Guilliams M, Brys L, Korf J, Drennan M, Van Den Abbeele J, De Baetselier P, Magez S (2007) A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology. J Immunol 179(6):4003–4014PubMedGoogle Scholar
  78. Tachado SD, Gerold P, Schwarz R, Novakovic S, McConville M, Schofield L (1997) Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma, and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties. Proc Natl Acad Sci USA 94(8):4022–4027PubMedCrossRefGoogle Scholar
  79. Todt JC, Hu B, Curtis JL (2008) The scavenger receptor SR-A I/II (CD204) signals via the receptor tyrosine kinase Mertk during apoptotic cell uptake by murine macrophages. J Leukoc Biol 84(2):510–518PubMedCrossRefGoogle Scholar
  80. Uzonna JE, Kaushik RS, Gordon JR, Tabel H (1999) Cytokines and antibody responses during Trypanosoma congolense infections in two inbred mouse strains that differ in resistance. Parasite Immunol 21(2):57–71PubMedCrossRefGoogle Scholar
  81. Van der Ploeg LH, Gottesdiener K, Lee MG (1992) Antigenic variation in African trypanosomes. Trends Genet 8:452–457PubMedGoogle Scholar
  82. Vickerman K, Luckins AG (1969) Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature 224:1125–1126PubMedCrossRefGoogle Scholar
  83. Vincendeau P, Daulouede S, Veyret B, Darde ML, Bouteille B, Lemesre JL (1992) Nitric oxide-mediated cytostatic activity on Trypanosoma brucei gambiense and Trypanosoma brucei brucei. Exp Parasitol 75:353–360PubMedCrossRefGoogle Scholar
  84. Webb H, Carnall N, Carrington M (1994) The role of GPI-PLC in Trypanosoma brucei. Braz J Med Biol Res 27(2):349–356PubMedGoogle Scholar
  85. Webb H, Carnall N, Vanhamme L, Rolin S, Van Den Abbeele J, Welburn S, Pays E, Carrington M (1997a) The GPI-phospholipase C of Trypanosoma brucei is nonessential but influences parasitemia in mice. J Cell Biol 139(1):103–114PubMedCrossRefGoogle Scholar
  86. Webb H, Carnall N, Vanhamme L, Rolin S, Vandenabbeele J, Welburn S, Pays E, Carrington M (1997b) The Gpi-phospholipase C of Trypanosoma brucei is nonessential but influences parasitemia in mice. J Cell Biol 139(1):103–114PubMedCrossRefGoogle Scholar
  87. Yew KH, Carsten B, Harrison C (2010) Scavenger receptor A1 is required for sensing HCMV by endosomal TLR-3/-9 in monocytic THP-1 cells. Mol Immunol 47(4):883–893PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • John M. Mansfield
    • 1
    • 2
    Email author
  • Donna M. Paulnock
    • 1
    • 2
  • Gina M. Hedberg
    • 1
    • 2
  1. 1.Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Medical Microbiology and ImmunologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations