Advertisement

The Biology of Tsetse–Trypanosome Interactions

  • Guy CaljonEmail author
  • Linda De Vooght
  • Jan Van Den AbbeeleEmail author
Chapter

Abstract

Human African trypanosomiasis (HAT) or sleeping sickness is a disease caused by human-pathogenic protozoan parasites of the Trypanosoma brucei species. These parasites are transmitted by the tsetse fly vector in which parasites have to surmount several natural bottlenecks to eventually reach the insect salivary glands and to differentiate into a final stage that is infective for a new vertebrate host. During the development in tsetse flies, trypanosomes change their surface properties, traverse physical barriers and achieve colonization of various tissues while going through complex cellular proliferation and differentiation programs. The general tsetse fly physiology and immunology, the blood feeding machinery and symbiotic relationships are important parameters that affect the parasite transmissibility.

Keywords

Salivary Gland Human African Trypanosomiasis Sterile Insect Technique Trypanosome Infection Peritrophic Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acosta-Serrano A, Vassella E, Liniger M, Kunz Renggli C, Brun R, Roditi I, Englund PT (2001) The surface coat of procyclic Trypanosoma brucei: programmed expression and proteolytic cleavage of procyclin in the tsetse fly. Proc Natl Acad Sci U S A 98(4):1513–1518PubMedCrossRefGoogle Scholar
  2. Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32(3):402–407PubMedCrossRefGoogle Scholar
  3. Akoda K, Van den Bossche P, Marcotty T, Kubi C, Coosemans M, De Deken R, Van den Abbeele J (2009) Nutritional stress affects the tsetse fly’s immune gene expression. Med Vet Entomol 23(3):195–201PubMedCrossRefGoogle Scholar
  4. Aksoy S (2000) Tsetse–A haven for microorganisms. Parasitol Today 16(3):114–118PubMedCrossRefGoogle Scholar
  5. Aksoy S (2003) Control of tsetse flies and trypanosomes using molecular genetics. Vet Parasitol 115(2):125–145PubMedCrossRefGoogle Scholar
  6. Attardo GM, Lohs C, Heddi A, Alam UH, Yildirim S, Aksoy S (2008) Analysis of milk gland structure and function in Glossina morsitans: milk protein production, symbiont populations and fecundity. J Insect Physiol 54(8):1236–1242PubMedCrossRefGoogle Scholar
  7. Benoit JB, Attardo GM, Michalkova V, Takac P, Bohova J, Aksoy S (2012) Sphingomyelinase activity in mother’s milk is essential for juvenile development: a case from lactating tsetse flies. Biol Reprod 87(1):17, 11–10PubMedCrossRefGoogle Scholar
  8. Bonomi A, Bassetti F, Gabrieli P, Beadell J, Falchetto M, Scolari F, Gomulski LM, Regazzini E, Ouma JO, Caccone A, Okedi LM, Attardo GM, Guglielmino CR, Aksoy S, Malacrida AR (2011) Polyandry is a common event in wild populations of the Tsetse fly Glossina fuscipes fuscipes and may impact population reduction measures. PLoS Negl Trop Dis 5(6):e1190PubMedCrossRefGoogle Scholar
  9. Boulanger N, Brun R, Ehret-Sabatier L, Kunz C, Bulet P (2002) Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections. Insect Biochem Mol Biol 32(4):369–375PubMedCrossRefGoogle Scholar
  10. Caljon G, Van Den Abbeele J, Stijlemans B, Coosemans M, De Baetselier P, Magez S (2006a) Tsetse fly saliva accelerates the onset of Trypanosoma brucei infection in a mouse model associated with a reduced host inflammatory response. Infect Immun 74(11):6324–6330PubMedCrossRefGoogle Scholar
  11. Caljon G, Van Den Abbeele J, Sternberg JM, Coosemans M, De Baetselier P, Magez S (2006b) Tsetse fly saliva biases the immune response to Th2 and induces anti-vector antibodies that are a useful tool for exposure assessment. Int J Parasitol 36(9):1025–1035PubMedCrossRefGoogle Scholar
  12. Caljon G, Broos K, De Goeyse I, De Ridder K, Sternberg JM, Coosemans M, De Baetselier P, Guisez Y, Den Abbeele JV (2009) Identification of a functional Antigen5-related allergen in the saliva of a blood feeding insect, the tsetse fly. Insect Biochem Mol Biol 39(5–6):332–341PubMedCrossRefGoogle Scholar
  13. Caljon G, De Ridder K, De Baetselier P, Coosemans M, Van Den Abbeele J (2010) Identification of a tsetse fly salivary protein with dual inhibitory action on human platelet aggregation. PLoS One 5(3):e9671PubMedCrossRefGoogle Scholar
  14. Caljon G, De Ridder K, Stijlemans B, Coosemans M, Magez S, De Baetselier P, Van Den Abbeele J (2012) Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity. PLoS One 7(10):e47233PubMedCrossRefGoogle Scholar
  15. Cappello M, Bergum PW, Vlasuk GP, Furmidge BA, Pritchard DI, Aksoy S (1996) Isolation and characterization of the tsetse thrombin inhibitor: a potent antithrombotic peptide from the saliva of Glossina morsitans morsitans. Am J Trop Med Hyg 54(5):475–480PubMedGoogle Scholar
  16. Chen X, Li S, Aksoy S (1999) Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol 48(1):49–58PubMedCrossRefGoogle Scholar
  17. Cheng Q, Aksoy S (1999) Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol 8(1):125–132PubMedCrossRefGoogle Scholar
  18. Cheng Q, Ruel TD, Zhou W, Moloo SK, Majiwa P, O’Neill SL, Aksoy S (2000) Tissue distribution and prevalence of Wolbachia infections in tsetse flies, Glossina spp. Med Vet Entomol 14(1):44–50PubMedCrossRefGoogle Scholar
  19. Dale C, Welburn SC (2001) The endosymbionts of tsetse flies: manipulating host-parasite interactions. Int J Parasitol 31(5–6):628–631PubMedCrossRefGoogle Scholar
  20. De Vooght L, Caljon G, Stijlemans B, De Baetselier P, Coosemans M, Van den Abbeele J (2012) Expression and extracellular release of a functional anti-trypanosome Nanobody(R) in Sodalis glossinidius, a bacterial symbiont of the tsetse fly. Microb Cell Fact 11:23PubMedCrossRefGoogle Scholar
  21. Dean S, Marchetti R, Kirk K, Matthews KR (2009) A surface transporter family conveys the trypanosome differentiation signal. Nature 459(7244):213–217PubMedCrossRefGoogle Scholar
  22. Despommier G, Hotez K (2006) Parasitic diseases, 5th edn. Apple Trees Productions, New York, NYGoogle Scholar
  23. Dyer NA, Rose C, Ejeh NO, Acosta-Serrano A (2013) Flying tryps: survival and maturation of trypanosomes in tsetse flies. Trends Parasitol 29(4):188–196PubMedCrossRefGoogle Scholar
  24. Elsen P, Amoudi MA, Leclercq M (1990) First record of Glossina fuscipes fuscipes Newstead, 1910 and Glossina morsitans submorsitans Newstead, 1910 in southwestern Saudi Arabia. Ann Soc Belg Med Trop 70(4):281–287PubMedGoogle Scholar
  25. Farikou O, Njiokou F, Mbida Mbida JA, Njitchouang GR, Djeunga HN, Asonganyi T, Simarro PP, Cuny G, Geiger A (2010) Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes—an epidemiological approach in two historical human African trypanosomiasis foci in Cameroon. Infect Genet Evol 10(1):115–121PubMedCrossRefGoogle Scholar
  26. Fragoso CM, Schumann Burkard G, Oberle M, Renggli CK, Hilzinger K, Roditi I (2009) PSSA-2, a membrane-spanning phosphoprotein of Trypanosoma brucei, is required for efficient maturation of infection. PLoS One 4(9):e7074PubMedCrossRefGoogle Scholar
  27. Geiger A, Ravel S, Mateille T, Janelle J, Patrel D, Cuny G, Frutos R (2007) Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Mol Biol Evol 24(1):102–109PubMedCrossRefGoogle Scholar
  28. Geiger A, Fardeau ML, Grebaut P, Vatunga G, Josenando T, Herder S, Cuny G, Truc P, Ollivier B (2009) First isolation of Enterobacter, Enterococcus, and Acinetobacter spp. as inhabitants of the tsetse fly (Glossina palpalis palpalis) midgut. Infect Genet Evol 9(6):1364–1370PubMedCrossRefGoogle Scholar
  29. Gibson W, Peacock L, Ferris V, Williams K, Bailey M (2008) The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei. Parasit Vectors 1(1):4PubMedCrossRefGoogle Scholar
  30. Gooding RH, Krafsur ES (2005) Tsetse genetics: contributions to biology, systematics, and control of tsetse flies. Annu Rev Entomol 50:101–123PubMedCrossRefGoogle Scholar
  31. Guther ML, Lee S, Tetley L, Acosta-Serrano A, Ferguson MA (2006) GPI-anchored proteins and free GPI glycolipids of procyclic form Trypanosoma brucei are nonessential for growth, are required for colonization of the tsetse fly, and are not the only components of the surface coat. Mol Biol Cell 17(12):5265–5274PubMedCrossRefGoogle Scholar
  32. Haddow JD, Haines LR, Gooding RH, Olafson RW, Pearson TW (2005) Identification of midgut proteins that are differentially expressed in trypanosome-susceptible and normal tsetse flies (Glossina morsitans morsitans). Insect Biochem Mol Biol 35(5):425–433PubMedCrossRefGoogle Scholar
  33. Haines LR, Lehane SM, Pearson TW, Lehane MJ (2010) Tsetse EP protein protects the fly midgut from trypanosome establishment. PLoS Pathog 6(3):e1000793PubMedCrossRefGoogle Scholar
  34. Hao Z, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S (2001) Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci U S A 98(22):12648–12653PubMedCrossRefGoogle Scholar
  35. Hao Z, Kasumba I, Aksoy S (2003) Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidiae). Insect Biochem Mol Biol 33(11):1155–1164PubMedCrossRefGoogle Scholar
  36. Hu C, Aksoy S (2006) Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol Microbiol 60(5):1194–1204PubMedCrossRefGoogle Scholar
  37. Ibrahim EA, Ingram GA, Molyneux DH (1984) Haemagglutinins and parasite agglutinins in haemolymph and gut of Glossina. Tropenmed Parasitol 35(3):151–156PubMedGoogle Scholar
  38. Jenni L, Molyneux DH, Livesey JL, Galun R (1980) Feeding behaviour of tsetse flies infected with salivarian trypanosomes. Nature 283(5745):383–385PubMedCrossRefGoogle Scholar
  39. Kolev NG, Ramey-Butler K, Cross GA, Ullu E, Tschudi C (2013) Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein. Science 338(6112):1352–1353CrossRefGoogle Scholar
  40. Krafsur ES (2009) Tsetse flies: genetics, evolution, and role as vectors. Infect Genet Evol 9(1):124–141PubMedCrossRefGoogle Scholar
  41. Leak SGA (1999) Tsetse biology and ecology: their role in the epidemiology and control of trypanosomosis. Cabi, Wallingford, UKGoogle Scholar
  42. Lehane MJ (2005) The biology of blood-sucking in insects. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Lehane MJ, Aksoy S, Levashina E (2004) Immune responses and parasite transmission in blood-feeding insects. Trends Parasitol 20(9):433–439PubMedCrossRefGoogle Scholar
  44. Lillico S, Field MC, Blundell P, Coombs GH, Mottram JC (2003) Essential roles for GPI-anchored proteins in African trypanosomes revealed using mutants deficient in GPI8. Mol Biol Cell 14(3):1182–1194PubMedCrossRefGoogle Scholar
  45. MacLeod ET, Maudlin I, Darby AC, Welburn SC (2007) Antioxidants promote establishment of trypanosome infections in tsetse. Parasitology 134(6):827–831PubMedCrossRefGoogle Scholar
  46. Mant MJ, Parker KR (1981) Two platelet aggregation inhibitors in tsetse (Glossina) saliva with studies of roles of thrombin and citrate in in vitro platelet aggregation. Br J Haematol 48(4):601–608PubMedCrossRefGoogle Scholar
  47. Maudlin I, Welburn SC (1987) Lectin mediated establishment of midgut infections of Trypanosoma congolense and Trypanosoma brucei in Glossina morsitans. Trop Med Parasitol 38(3):167–170PubMedGoogle Scholar
  48. Morlais I, Grebaut P, Bodo JM, Djoha S, Cuny G (1998) Characterization of trypanosome infections by polymerase chain reaction (PCR) amplification in wild tsetse flies in Cameroon. Parasitology 116(6):547–554PubMedCrossRefGoogle Scholar
  49. Msangi AR, Whitaker CJ, Lehane MJ (1998) Factors influencing the prevalence of trypanosome infection of Glossina pallidipes on the Ruvu flood plain of Eastern Tanzania. Acta Trop 70(2):143–155PubMedCrossRefGoogle Scholar
  50. Oberholzer M, Lopez MA, McLelland BT, Hill KL (2010) Social motility in african trypanosomes. PLoS Pathog 6(1):e1000739PubMedCrossRefGoogle Scholar
  51. Oberle M, Balmer O, Brun R, Roditi I (2010) Bottlenecks and the maintenance of minor genotypes during the life cycle of Trypanosoma brucei. PLoS Pathog 6(7):e1001023PubMedCrossRefGoogle Scholar
  52. O’Neill SL, Gooding RH, Aksoy S (1993) Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Med Vet Entomol 7(4):377–383PubMedCrossRefGoogle Scholar
  53. Otieno LH, Darji N (1979) The abundance of pathogenic African trypanosomes in the salivary secretions of wild Glossina pallidipes. Ann Trop Med Parasitol 73(6):583–588PubMedGoogle Scholar
  54. Pais R, Lohs C, Wu Y, Wang J, Aksoy S (2008) The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl Environ Microbiol 74(19):5965–5974PubMedCrossRefGoogle Scholar
  55. Parker KR, Mant MJ (1979) Effects of tsetse (Glossina morsitans morsitans Westw.) (Diptera: Glossinidae) salivary gland homogenate on coagulation and fibrinolysis. Thromb Haemost 42(2):743–751PubMedGoogle Scholar
  56. Peacock L, Ferris V, Bailey M, Gibson W (2006) Multiple effects of the lectin-inhibitory sugars D-glucosamine and N-acetyl-glucosamine on tsetse-trypanosome interactions. Parasitology 132(5):651–658PubMedCrossRefGoogle Scholar
  57. Peacock L, Ferris V, Sharma R, Sunter J, Bailey M, Carrington M, Gibson W (2011) Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc Natl Acad Sci U S A 108(9):3671–3676PubMedCrossRefGoogle Scholar
  58. Pontes MH, Smith KL, De Vooght L, Van Den Abbeele J, Dale C (2011) Attenuation of the sensing capabilities of PhoQ in transition to obligate insect-bacterial association. PLoS Genet 7(11):e1002349PubMedCrossRefGoogle Scholar
  59. Rao AK (1998) Congenital disorders of platelet function: disorders of signal transduction and secretion. Am J Med Sci 316(2):69–76PubMedCrossRefGoogle Scholar
  60. Rio RV, Hu Y, Aksoy S (2004) Strategies of the home-team: symbioses exploited for vector-borne disease control. Trends Microbiol 12(7):325–336PubMedCrossRefGoogle Scholar
  61. Roditi I, Liniger M (2002) Dressed for success: the surface coats of insect-borne protozoan parasites. Trends Microbiol 10(3):128–134PubMedCrossRefGoogle Scholar
  62. Roditi I, Furger A, Ruepp S, Schurch N, Butikofer P (1998) Unravelling the procyclin coat of Trypanosoma brucei. Mol Biochem Parasitol 91(1):117–130PubMedCrossRefGoogle Scholar
  63. Rotureau B, Subota I, Buisson J, Bastin P (2012) A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly. Development 139(10):1842–1850PubMedCrossRefGoogle Scholar
  64. Ruepp S, Furger A, Kurath U, Renggli CK, Hemphill A, Brun R, Roditi I (1997) Survival of Trypanosoma brucei in the tsetse fly is enhanced by the expression of specific forms of procyclin. J Cell Biol 137(6):1369–1379PubMedCrossRefGoogle Scholar
  65. Sbicego S, Vassella E, Kurath U, Blum B, Roditi I (1999) The use of transgenic Trypanosoma brucei to identify compounds inducing the differentiation of bloodstream forms to procyclic forms. Mol Biochem Parasitol 104(2):311–322PubMedCrossRefGoogle Scholar
  66. Sharma R, Gluenz E, Peacock L, Gibson W, Gull K, Carrington M (2009) The heart of darkness: growth and form of Trypanosoma brucei in the tsetse fly. Trends Parasitol 25(11):517–524PubMedCrossRefGoogle Scholar
  67. Subota I, Rotureau B, Blisnick T, Ngwabyt S, Durand-Dubief M, Engstler M, Bastin P (2011) ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation. Mol Biol Cell 22(22):4205–4219PubMedCrossRefGoogle Scholar
  68. Tetley L, Vickerman K (1985) Differentiation in Trypanosoma brucei: host-parasite cell junctions and their persistence during acquisition of the variable antigen coat. J Cell Sci 74:1–19PubMedGoogle Scholar
  69. Tetley L, Turner CM, Barry JD, Crowe JS, Vickerman K (1987) Onset of expression of the variant surface glycoproteins of Trypanosoma brucei in the tsetse fly studied using immunoelectron microscopy. J Cell Sci 87(2):363–372PubMedGoogle Scholar
  70. Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, Hattori M, Aksoy S (2006) Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16(2):149–156PubMedCrossRefGoogle Scholar
  71. Turner CM, Barry JD, Maudlin I, Vickerman K (1988) An estimate of the size of the metacyclic variable antigen repertoire of Trypanosoma brucei rhodesiense. Parasitology 97(2):269–276PubMedCrossRefGoogle Scholar
  72. Urwyler S, Studer E, Renggli CK, Roditi I (2007) A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei. Mol Microbiol 63(1):218–228PubMedCrossRefGoogle Scholar
  73. Van Den Abbeele J, Claes Y, van Bockstaele D, Le Ray D, Coosemans M (1999) Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology 118(5):469–478CrossRefGoogle Scholar
  74. Van Den Abbeele J, Caljon G, De Ridder K, De Baetselier P, Coosemans M (2010) Trypanosoma brucei modifies the tsetse salivary composition, altering the fly feeding behavior that favors parasite transmission. PLoS Pathog 6(6):e1000926CrossRefGoogle Scholar
  75. Van Den Abbeele J, Bourtzis K, Weiss B, Cordon-Rosales C, Miller W, Abd-Alla AM, Parker A (2013) Enhancing tsetse fly refractoriness to trypanosome infection—a new IAEA coordinated research project. J Invertebr Pathol 112(Suppl):S142–S147CrossRefGoogle Scholar
  76. Vassella E, Reuner B, Yutzy B, Boshart M (1997) Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci 110(21):2661–2671PubMedGoogle Scholar
  77. Vassella E, Den Abbeele JV, Butikofer P, Renggli CK, Furger A, Brun R, Roditi I (2000) A major surface glycoprotein of Trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes Dev 14(5):615–626PubMedGoogle Scholar
  78. Vassella E, Oberle M, Urwyler S, Renggli CK, Studer E, Hemphill A, Fragoso C, Butikofer P, Brun R, Roditi I (2009) Major surface glycoproteins of insect forms of Trypanosoma brucei are not essential for cyclical transmission by tsetse. PLoS One 4(2):e4493PubMedCrossRefGoogle Scholar
  79. Vickerman K, Tetley L, Hendry KA, Turner CM (1988) Biology of African trypanosomes in the tsetse fly. Biol Cell 64(2):109–119PubMedCrossRefGoogle Scholar
  80. Visser N, Opperdoes FR, Borst P (1981) Subcellular compartmentation of glycolytic intermediates in Trypanosoma brucei. Eur J Biochem 118(3):521–526PubMedCrossRefGoogle Scholar
  81. Wang J, Wu Y, Yang G, Aksoy S (2009) Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc Natl Acad Sci U S A 106(29):12133–12138PubMedCrossRefGoogle Scholar
  82. Weiss BL, Wang J, Aksoy S (2011) Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol 9(5):e1000619PubMedCrossRefGoogle Scholar
  83. Welburn SC, Maudlin I (1999) Tsetse-trypanosome interactions: rites of passage. Parasitol Today 15(10):399–403PubMedCrossRefGoogle Scholar
  84. Welburn SC, Maudlin I, Ellis DS (1987) In vitro cultivation of rickettsia-like-organisms from Glossina spp. Ann Trop Med Parasitol 81(3):331–335PubMedGoogle Scholar
  85. Welburn SC, Maudlin I, Molyneux DH (1994) Midgut lectin activity and sugar specificity in teneral and fed tsetse. Med Vet Entomol 8(1):81–87PubMedCrossRefGoogle Scholar
  86. Wu SC, Liao CW, Pan RL, Juang JL (2012) Infection-induced intestinal oxidative stress triggers organ-to-organ immunological communication in Drosophila. Cell Host Microbe 11(4):410–417PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Veterinary Protozoology UnitInstitute of Tropical MedicineAntwerpBelgium

Personalised recommendations