Cell Biology for Immune Evasion: Organizing Antigenic Variation, Surfaces, Trafficking, and Cellular Structures in Trypanosoma brucei

  • Ka Fai Leung
  • Paul T. Manna
  • Cordula Boehm
  • Luke Maishman
  • Mark C. FieldEmail author


For any pathogen to maintain an infection for a protracted period, there is a necessity for precise adaptation to the host environment to avoid the twin perils of elimination by the host defense system or by death of the host from a fatal impact on host physiology. There is also a need to maintain a sufficiently robust infection, and hence cell number, so that the probability of transmission is maximized, but again avoiding overwhelming host resources. For African trypanosomes, which, in the case of Trypanosoma brucei gambiense, can survive within certain mammalian hosts for many years or even decades, these constraints are clearly very well met. Here we will consider several cellular systems and current thinking on how these contribute toward immune evasion and survival; specific areas are maintaining the parasite surface proteome, motility, and control of gene expression of virulence-associated surface molecules. Our focus is essentially restricted to African trypanosomes, due in part to the overwhelmingly greater understanding we have of the cell biology of these trypanosomatids.


Endomembrane System Expression Site Flagellar Pocket Procyclic Form African Trypanosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work in our laboratory is supported by a program grant from the Wellcome Trust (082813 to MCF) and project grants from the MRC (MR/K008749/1 to MCF). LM is supported by a Cambridge Gates studentship.


  1. Absalon S, Blisnick T, Bonhivers M, Kohl L, Cayet NG, Toutirais GR, Buisson J, Robinson D, Bastin P (2008a) Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei. J Cell Sci 121(22):3704–3716PubMedGoogle Scholar
  2. Absalon S, Blisnick T, Kohl L, Toutirais GR, Dore GN, Julkowska D, Tavenet A, Bastin P (2008b) Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell 19(3):929–944PubMedGoogle Scholar
  3. Acosta-Serrano A, Vassella E, Liniger M, Kunz Renggli C, Brun R, Roditi I, Englund PT (2001) The surface coat of procyclic Trypanosoma brucei: programmed expression and proteolytic cleavage of procyclin in the tsetse fly. Proc Natl Acad Sci USA 98(4):1513–1518PubMedGoogle Scholar
  4. Adung’a VO, Gadelha C, Field MC (2013) Proteomic analysis of clathrin interactions in trypanosomes reveals dynamic evolution of endocytosis. Traffic 14(4):440–457PubMedGoogle Scholar
  5. Alexandre S, Paindavoine P, Tebabi P, Pays A, Halleux S, Steinert M, Pays E (1990) Differential expression of a family of putative adenylate/guanylate cyclase genes in Trypanosoma brucei. Mol Biochem Parasitol 43(2):279–288PubMedGoogle Scholar
  6. Alexandre S, Paindavoine P, Hanocq-Quertier J, Paturiaux-Hanocq F, Tebabi P, Pays E (1996) Families of adenylate cyclase genes in Trypanosoma brucei. Mol Biochem Parasitol 77(2):173–182PubMedGoogle Scholar
  7. Ali JA, Creek DJ, Burgess K, Allison HC, Field MC, Mäser P, De Koning HP (2013) Pyrimidine salvage in Trypanosoma brucei bloodstream forms and the trypanocidal action of halogenated pyrimidines. Mol Pharmacol 83(2):439–453PubMedGoogle Scholar
  8. Allen CL, Goulding D, Field MC (2003) Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J 22(19):4991–5002PubMedGoogle Scholar
  9. Al-Qahtani A, Teilhet M, Mensa-Wilmot K (1998) Species-specificity in endoplasmic reticulum signal peptide utilization revealed by proteins from Trypanosoma brucei and leishmania. Biochem J 331(2):521–529PubMedGoogle Scholar
  10. Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, Turner DJ, Field MC, Berriman M, Horn D (2012) High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 482(7384):232–236PubMedGoogle Scholar
  11. Baker N, de Koning HP, Mäser P, Horn D (2013) Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol 29(3):110–118PubMedGoogle Scholar
  12. Bangs JD (2011) Replication of the ERES:Golgi junction in bloodstream-form African trypanosomes. Mol Microbiol 82(6):1433–1443PubMedGoogle Scholar
  13. Baral TN (2010) Immunobiology of African trypanosomes: need of alternative interventions. J Biomed Biotechnol 2010:389153PubMedGoogle Scholar
  14. Barry JD (1979) Capping of variable antigen on Trypanosoma brucei, and its immunological and biological significance. J Cell Sci 37:287–302PubMedGoogle Scholar
  15. Beja O, Ullu E, Michaeli S (1993) Identification of a tRNA-like molecule that copurifies with the 7sl rna of Trypanosoma brucei. Mol Biochem Parasitol 57(2):223–229PubMedGoogle Scholar
  16. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DM, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CM, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309(5733):416–422PubMedGoogle Scholar
  17. Besteiro S, Coombs GH, Mottram JC (2006) The SNARE protein family of Leishmania major. BMC Genomics 7:250PubMedGoogle Scholar
  18. Biton M, Mandelboim M, Arvatz G, Michaeli S (2006) RNAi interference of XPO1 and Sm genes and their effect on the spliced leader RNA in Trypanosoma brucei. Mol Biochem Parasitol 150(2):132–143PubMedGoogle Scholar
  19. Blum ML, Down JA, Gurnett AM, Carrington M, Turner MJ, Wiley DC (1993) A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature 362(6421):603–609PubMedGoogle Scholar
  20. Bonhivers M, Landrein N, Decossas M, Robinson DR (2008a) A monoclonal antibody marker for the exclusion-zone filaments of Trypanosoma brucei. Parasit Vectors 1(1):21PubMedGoogle Scholar
  21. Bonhivers M, Nowacki S, Landrein N, Robinson DR (2008b) Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated. PLoS Biol 6(5):e105PubMedGoogle Scholar
  22. Bridges DJ, Pitt AR, Hanrahan O, Brennan K, Voorheis HP, Herzyk P, de Koning HP, Burchmore RJ (2008) Characterisation of the plasma membrane subproteome of bloodstream form Trypanosoma brucei. Proteomics 8(1):83–99PubMedGoogle Scholar
  23. Bringaud F, Baltz T (1992) A potential hexose transporter gene expressed predominantly in the bloodstream form of Trypanosoma brucei. Mol Biochem Parasitol 52(1):111–121PubMedGoogle Scholar
  24. Bringaud F, Baltz T (1993) Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei. Mol Cell Biol 13(2):1146–1154PubMedGoogle Scholar
  25. Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, Gaskell SJ, McKean PG, Gull K (2006) Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440(7081):224–227PubMedGoogle Scholar
  26. Bruce D (1915) The croonian lectures on trypanosomes causing disease in man and domestic animals in central Africa: delivered before the royal college of physicians of London. Br Med J 2(2845):48–53PubMedGoogle Scholar
  27. Bullard W, Kieft R, Capewell P, Veitch NJ, Macleod A, Hajduk SL (2012) Haptoglobin-hemoglobin receptor independent killing of African trypanosomes by human serum and trypanosome lytic factors. Virulence 3(1):72–76PubMedGoogle Scholar
  28. Bütikofer P, Vassella E, Boschung M, Renggli CK, Brun R, Pearson TW, Roditi I (2002) Glycosylphosphatidylinositol-anchored surface molecules of Trypanosoma congolense insect forms are developmentally regulated in the tsetse fly. Mol Biochem Parasitol 119(1):7–16PubMedGoogle Scholar
  29. Capewell P, Veitch NJ, Turner CM, Raper J, Berriman M, Hajduk SL, MacLeod A (2011) Differences between Trypanosoma brucei gambiense groups 1 and 2 in their resistance to killing by trypanolytic factor 1. PLoS Negl Trop Dis 5(9):e1287PubMedGoogle Scholar
  30. Caramelo JJ, Parodi AJ (2007) How sugars convey information on protein conformation in the endoplasmic reticulum. Semin Cell Dev Biol 18(6):732–742PubMedGoogle Scholar
  31. Carter NS, Fairlamb AH (1993) Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature 361(6408):173–176PubMedGoogle Scholar
  32. Castro O, Movsichoff F, Parodi AJ (2006) Preferential transfer of the complete glycan is determined by the oligosaccharyltransferase complex and not by the catalytic subunit. Proc Natl Acad Sci 103(40):14756–14760PubMedGoogle Scholar
  33. Chattopadhyay A, Jones NG, Nietlispach D, Nielsen PR, Voorheis HP, Mott HR, Carrington M (2005) Structure of the C-terminal domain from Trypanosoma brucei variant surface glycoprotein MITat1.2. J Biol Chem 280(8):7228–7235PubMedGoogle Scholar
  34. Chaves I, Rudenko G, Dirks-Mulder A, Cross M, Borst P (1999) Control of variant surface glycoprotein gene-expression sites in Trypanosoma brucei. EMBO J 18(17):4846–4855PubMedGoogle Scholar
  35. Chung WL, Carrington M, Field MC (2004) Cytoplasmic targeting signals in transmembrane invariant surface glycoproteins of trypanosomes. J Biol Chem 279(52):54887–54895PubMedGoogle Scholar
  36. Chung WL, Leung KF, Carrington M, Field MC (2008) Ubiquitylation is required for degradation of transmembrane surface proteins in trypanosomes. Traffic 9(10):1681–1697PubMedGoogle Scholar
  37. Coppens I, Opperdoes FR, Courtoy PJ, Baudhuin P (1987) Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. J Protozool 34(4):465–473PubMedGoogle Scholar
  38. Coppens I, Baudhuin P, Opperdoes FR, Courtoy PJ (1988) Receptors for the host low density lipoproteins on the hemoflagellate Trypanosoma brucei: purification and involvement in the growth of the parasite. Proc Natl Acad Sci USA 85(18):6753–6757PubMedGoogle Scholar
  39. Dacks JB, Field MC (2007) Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci 120(17):2977–2985PubMedGoogle Scholar
  40. Dacks JB, Peden AA, Field MC (2009) Evolution of specificity in the eukaryotic endomembrane system. Int J Biochem Cell Biol 41(2):330–340PubMedGoogle Scholar
  41. Daniels JP, Gull K, Wickstead B (2010) Cell biology of the trypanosome genome. Microbiol Mol Biol Rev 74(4):552–569PubMedGoogle Scholar
  42. Davidge JA, Chambers E, Dickinson HA, Towers K, Ginger ML, McKean PG, Gull K (2006) Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. J Cell Sci 119(Pt 19):3935–3943PubMedGoogle Scholar
  43. De Greef C, Imberechts H, Matthyssens G, Van Meirvenne N, Hamers R (1989) A gene expressed only in serum-resistant variants of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 36(2):169–176PubMedGoogle Scholar
  44. de Koning HP, Watson CJ, Jarvis SM (1998) Characterization of a nucleoside/proton symporter in procyclic Trypanosoma brucei brucei. J Biol Chem 273(16):9486–9494PubMedGoogle Scholar
  45. de la Canal L, Parodi AJ (1987) Synthesis of dolichol derivatives in trypanosomatids. Characterization of enzymatic patterns. J Biol Chem 262(23):11128–11133PubMedGoogle Scholar
  46. Dean S, Marchetti R, Kirk K, Matthews KR (2009) A surface transporter family conveys the trypanosome differentiation signal. Nature 459(7244):213–217PubMedGoogle Scholar
  47. DeGrasse JA, DuBois KN, Devos D, Siegel TN, Sali A, Field MC, Rout MP, Chait BT (2009) Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteomics 8(9):2119–2130PubMedGoogle Scholar
  48. Dossin Fde M, Schenkman S (2005) Actively transcribing RNA polymerase II concentrates on spliced leader genes in the nucleus of Trypanosoma cruzi. Eukaryot Cell 4(5):960–970PubMedGoogle Scholar
  49. DuBois KN, Alsford S, Holden JM, Buisson J, Swiderski M, Bart JM, Ratushny AV, Wan Y, Bastin P, Barry JD, Navarro M, Horn D, Aitchison JD, Rout MP, Field MC (2012) NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol 10(3):e1001287PubMedGoogle Scholar
  50. Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB (2012) Sculpting the endomembrane system in deep time: high resolution phylogenetics of rab gtpases. J Cell Sci 125(10):2500–2508PubMedGoogle Scholar
  51. Emmer BT, Maric D, Engman DM (2010) Molecular mechanisms of protein and lipid targeting to ciliary membranes. J Cell Sci 123(4):529–536PubMedGoogle Scholar
  52. Engstler M, Thilo L, Weise F, Grunfelder CG, Schwarz H, Boshart M, Overath P (2004) Kinetics of endocytosis and recycling of the gpi-anchored variant surface glycoprotein in Trypanosoma brucei. J Cell Sci 117(7):1105–1115PubMedGoogle Scholar
  53. Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, Heddergott N, Overath P (2007) Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131(3):505–515PubMedGoogle Scholar
  54. Ersfeld K, Gull K (2001) Targeting of cytoskeletal proteins to the flagellum of Trypanosoma brucei. J Cell Sci 114(1):141–148PubMedGoogle Scholar
  55. Ersfeld K, Melville SE, Gull K (1999) Nuclear and genome organization of Trypanosoma brucei. Parasitol Today 15(2):58–63PubMedGoogle Scholar
  56. Ferguson MA, Murray P, Rutherford H, McConville MJ (1993) A simple purification of procyclic acidic repetitive protein and demonstration of a sialylated glycosyl-phosphatidylinositol membrane anchor. Biochem J 291(Pt 1):51–55PubMedGoogle Scholar
  57. Field MC, Carrington M (2004) Intracellular membrane transport systems in Trypanosoma brucei. Traffic 5(12):905–913PubMedGoogle Scholar
  58. Field MC, Carrington M (2009) The trypanosome flagellar pocket. Nat Rev Microbiol 7(11):775–786PubMedGoogle Scholar
  59. Field H, Sherwin T, Smith AC, Gull K, Field MC (2000) Cell-cycle and developmental regulation of TbRAB31 localisation, a GTP-locked Rab protein from Trypanosoma brucei. Mol Biochem Parasitol 106(1):21–35PubMedGoogle Scholar
  60. Field M, Gabernet-Castello C, Dacks J (2007a) Reconstructing the evolution of the endocytic system: insights from genomics and molecular cell biology. In: Gáspár J (ed) Eukaryotic membranes and cytoskeleton. Springer, New York, pp 84–96Google Scholar
  61. Field MC, Natesan SKA, Gabernet-Castello C, Koumandou VL (2007b) Intracellular trafficking in the trypanosomatids. Traffic 8(6):629–639PubMedGoogle Scholar
  62. Field MC, Lumb JH, Adung’a VO, Jones NG, Engstler M (2009) Macromolecular trafficking and immune evasion in African trypanosomes. In: Kwang WJ (ed) International review of cell and molecular biology. Academic, Boston, MA, pp 1–67Google Scholar
  63. Field MC, Sergeenko T, Wang YN, Böhm S, Carrington M (2010) Chaperone requirements for biosynthesis of the trypanosome variant surface glycoprotein. PLoS One 5(1):e8468PubMedGoogle Scholar
  64. Field MC, Horn D, Alsford S, Koreny L, Rout MP (2012) Telomeres, tethers and trypanosomes. Nucleus 3(6):478–486PubMedGoogle Scholar
  65. Figueiredo LM, Cross GA (2010) Nucleosomes are depleted at the VSG expression site transcribed by RNA polymerase I in African trypanosomes. Eukaryot Cell 9(1):148–154PubMedGoogle Scholar
  66. Figueiredo LM, Janzen CJ, Cross GA (2008) A histone methyltransferase modulates antigenic variation in African trypanosomes. PLoS Biol 6(7):e161PubMedGoogle Scholar
  67. Freymann D, Down J, Carrington M, Roditi I, Turner M, Wiley D (1990) 2.9 A resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. J Mol Biol 216(1):141–160PubMedGoogle Scholar
  68. Gabernet-Castello C, Dacks JB, Field MC (2009) The single enth-domain protein of trypanosomes; endocytic functions and evolutionary relationship with epsin. Traffic 10(7):894–911PubMedGoogle Scholar
  69. Gabernet-Castello C, DuBois KN, Nimmo C, Field MC (2011) Rab11 function in Trypanosoma brucei: identification of conserved and novel interaction partners. Eukaryot Cell 10(8):1082–1094PubMedGoogle Scholar
  70. Gadelha C, Rothery S, Morphew M, McIntosh JR, Severs NJ, Gull K (2009) Membrane domains and flagellar pocket boundaries are influenced by the cytoskeleton in African trypanosomes. Proc Natl Acad Sci USA 106(41):17425–17430PubMedGoogle Scholar
  71. Garcia-Salcedo JA, Perez-Morga D, Gijon P, Dilbeck V, Pays E, Nolan DP (2004) A differential role for actin during the life cycle of Trypanosoma brucei. EMBO J 23(4):780–789PubMedGoogle Scholar
  72. Giroud C, Ottones F, Coustou V, Dacheux D, Biteau N, Miezan B, Van Reet N, Carrington M, Doua F, Baltz T (2009) Murine models for Trypanosoma brucei gambiense disease progression–from silent to chronic infections and early brain tropism. PLoS Negl Trop Dis 3(9):e509PubMedGoogle Scholar
  73. Goldshmidt H, Sheiner L, Butikofer P, Roditi I, Uliel S, Gunzel M, Engstler M, Michaeli S (2008) Role of protein translocation pathways across the endoplasmic reticulum in Trypanosoma brucei. J Biol Chem 283(46):32085–32098PubMedGoogle Scholar
  74. Grab DJ, Webster P, Verjee Y, Lonsdale-Eccles J (1997) Golgi-associated phosphohydrolases in Trypanosoma brucei brucei. Mol Biochem Parasitol 86(1):127–132PubMedGoogle Scholar
  75. Griffiths GM, Tsun A, Stinchcombe JC (2010) The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol 189(3):399–406PubMedGoogle Scholar
  76. Grunfelder CG, Engstler M, Weise F, Schwarz H, Stierhof Y-D, Morgan GW, Field MC, Overath P (2003) Endocytosis of a glycosylphosphatidylinositol-anchored protein via clathrin-coated vesicles, sorting by default in endosomes, and exocytosis via rab11-positive carriers. Mol Biol Cell 14(5):2029–2040PubMedGoogle Scholar
  77. Gudin S, Quashie NB, Candlish D, Al-Salabi MI, Jarvis SM, Ranford-Cartwright LC, de Koning HP (2006) Trypanosoma brucei: a survey of pyrimidine transport activities. Exp Parasitol 114(2):118–125PubMedGoogle Scholar
  78. Hall B, Allen CL, Goulding D, Field MC (2004a) Both of the rab5 subfamily small GTPases of Trypanosoma brucei are essential and required for endocytosis. Mol Biochem Parasitol 138(1):67–77PubMedGoogle Scholar
  79. Hall BS, Pal A, Goulding D, Field MC (2004b) Rab4 is an essential regulator of lysosomal trafficking in trypanosomes. J Biol Chem 279(43):45047–45056PubMedGoogle Scholar
  80. Hall BS, Pal A, Goulding D, Acosta-Serrano A, Field MC (2005) Trypanosoma brucei: TbRab4 regulates membrane recycling and expression of surface proteins in procyclic forms. Exp Parasitol 111(3):160–171PubMedGoogle Scholar
  81. Hall BS, Gabernet-Castello C, Voak A, Goulding D, Natesan SK, Field MC (2006) Tbvps34, the trypanosome orthologue of vps34, is required for Golgi complex segregation. J Biol Chem 281(37):27600–27612PubMedGoogle Scholar
  82. Hebert DN, Molinari M (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 87(4):1377–1408PubMedGoogle Scholar
  83. He CY, Ho HH, Malsam J, Chalouni C, West CM, Ullu E, Toomre D, Warren G (2004) Golgi duplication in Trypanosoma brucei. J Cell Biol 165(3):313–321PubMedGoogle Scholar
  84. Heddergott N, Krüger T, Babu SB, Wei A, Stellamanns E, Uppaluri S, Pfohl T, Stark H, Engstler M (2012) Trypanosome motion represents an adaptation to the crowded environment of the vertebrate bloodstream. PLoS Pathog 8(11):e1003023PubMedGoogle Scholar
  85. Hettema EH, Distel B, Tabak HF (1999) Import of proteins into peroxisomes. Biochim Biophys Acta 1451(1):17–34PubMedGoogle Scholar
  86. Higgins MK, Tkachenko O, Brown A, Reed J, Raper J, Carrington M (2013) Structure of the trypanosome haptoglobin-hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc Natl Acad Sci USA 110(5):1905–1910PubMedGoogle Scholar
  87. Hill KL (2010) Parasites in motion: flagellum-driven cell motility in African trypanosomes. Curr Opin Microbiol 13(4):459–465PubMedGoogle Scholar
  88. Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K (2010) Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123(9):1407–1413PubMedGoogle Scholar
  89. Huang G, Fang J, Sant’Anna C, Li Z-H, Wellems DL, Rohloff P, Docampo R (2011) Adaptor protein-3 (ap-3) complex mediates the biogenesis of acidocalcisomes and is essential for growth and virulence of Trypanosoma brucei. J Biol Chem 286(42):36619–36630PubMedGoogle Scholar
  90. Hughes LC, Ralston KS, Hill KL, Zhou ZH (2012) Three-dimensional structure of the Trypanosome flagellum suggests that the paraflagellar rod functions as a biomechanical spring. PLoS One 7(1):e25700PubMedGoogle Scholar
  91. Hury A, Goldshmidt H, Tkacz ID, Michaeli S (2009) Trypanosome spliced-leader-associated RNA (SLA1) localization and implications for spliced-leader RNA biogenesis. Eukaryot Cell 8(1):56–68PubMedGoogle Scholar
  92. Ikeda KN, de Graffenried CL (2012) Polo-like kinase is necessary for flagellum inheritance in Trypanosoma brucei. J Cell Sci 125(Pt 13):3173–3184PubMedGoogle Scholar
  93. Jackson AP, Berry A, Aslett M, Allison HC, Burton P, Vavrova-Anderson J, Brown R, Browne H, Corton N, Hauser H, Gamble J, Gilderthorp R, Marcello L, McQuillan J, Otto TD, Quail MA, Sanders MJ, van Tonder A, Ginger ML, Field MC, Barry JD, Hertz-Fowler C, Berriman M (2012) Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proc Natl Acad Sci USA 109(9):3416–3421PubMedGoogle Scholar
  94. Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, Bazan JF, Nachury MV (2010) The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141(7):1208–1219PubMedGoogle Scholar
  95. Jones NG, Nietlispach D, Sharma R, Burke DF, Eyres I, Mues M, Mott HR, Carrington M (2008) Structure of a glycosylphosphatidylinositol-anchored domain from a trypanosome variant surface glycoprotein. J Biol Chem 283(6):3584–3593PubMedGoogle Scholar
  96. Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16(4):47R–62RPubMedGoogle Scholar
  97. Kelly S, Singleton W, Wickstead B, Ersfeld K, Gull K (2006) Characterization and differential nuclear localization of Nopp140 and a novel Nopp140-like protein in trypanosomes. Eukaryot Cell 5(5):876–879PubMedGoogle Scholar
  98. Kieft R, Capewell P, Turner CM, Veitch NJ, MacLeod A, Hajduk S (2010) Mechanism of Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor. Proc Natl Acad Sci USA 107(37):16137–16141PubMedGoogle Scholar
  99. Kind J, van Steensel B (2010) Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol 22(3):320–325PubMedGoogle Scholar
  100. Kolev NG, Ramey-Butler K, Cross GA, Ullu E, Tschudi C (2012) Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein. Science 338(6112):1352–1353PubMedGoogle Scholar
  101. Koumandou VL, Dacks J, Coulson R, Field M (2007) Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and sm proteins. BMC Evol Biol 7(1):29PubMedGoogle Scholar
  102. Koumandou VL, Natesan SK, Sergeenko T, Field MC (2008) The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. BMC Genomics 9:298PubMedGoogle Scholar
  103. Koumandou VL, Klute MJ, Herman EK, Nunez-Miguel R, Dacks JB, Field MC (2011) Evolutionary reconstruction of the retromer complex and its function in Trypanosoma brucei. J Cell Sci 124(9):1496–1509PubMedGoogle Scholar
  104. Koumandou VL, Boehm C, Horder KA, Field MC (2013) Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes. Eukaryot Cell 12(2):330–342PubMedGoogle Scholar
  105. Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR, Gull K (2009) Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J Cell Sci 122(Pt 8):1081–1090PubMedGoogle Scholar
  106. Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR, Gull K (2010) Basal body movements orchestrate membrane organelle division and cell morphogenesis in Trypanosoma brucei. J Cell Sci 123(Pt 17):2884–2891PubMedGoogle Scholar
  107. Lacomble S, Vaughan S, Deghelt M, Moreira-Leite FF, Gull K (2012) A Trypanosoma brucei protein required for maintenance of the flagellum attachment zone and flagellar pocket ER domains. Protist 163(4):602–615PubMedGoogle Scholar
  108. Landeira D, Navarro M (2007) Nuclear repositioning of the VSG promoter during developmental silencing in Trypanosoma brucei. J Cell Biol 176(2):133–139PubMedGoogle Scholar
  109. Landeira D, Bart JM, Van Tyne D, Navarro M (2009) Cohesin regulates VSG monoallelic expression in trypanosomes. J Cell Biol 186(2):243–254PubMedGoogle Scholar
  110. Lanteri CA, Stewart ML, Brock JM, Alibu VP, Meshnick SR, Tidwell RR, Barrett MP (2006) Roles for the Trypanosoma brucei P2 transporter in DB75 uptake and resistance. Mol Pharmacol 70(5):1585–1592PubMedGoogle Scholar
  111. Leung KF, Dacks JB, Field MC (2008) Evolution of the multivesicular body escrt machinery; retention across the eukaryotic lineage. Traffic 9(10):1698–1716PubMedGoogle Scholar
  112. Leung KF, Riley FS, Carrington M, Field MC (2011) Ubiquitylation and developmental regulation of invariant surface protein expression in trypanosomes. Eukaryot Cell 10(7):916–931PubMedGoogle Scholar
  113. Liang XH, Liu Q, Liu L, Tschudi C, Michaeli S (2006) Analysis of spliceosomal complexes in Trypanosoma brucei and silencing of two splicing factors Prp31 and Prp43. Mol Biochem Parasitol 145(1):29–39PubMedGoogle Scholar
  114. Liu L, Ben-Shlomo H, Y-x X, Stern MZ, Goncharov I, Zhang Y, Michaeli S (2003) The trypanosomatid signal recognition particle consists of two RNA molecules, a 7SL RNA homologue and a novel tRNA-like molecule. J Biol Chem 278(20):18271–18280PubMedGoogle Scholar
  115. Lumb JH, Leung KF, DuBois KN, Field MC (2011) Rab28 function in trypanosomes: interactions with retromer and escrt pathways. J Cell Sci 124(22):3771–3783PubMedGoogle Scholar
  116. Lustig Y, Goldshmidt H, Uliel S, Michaeli S (2005) The Trypanosoma brucei signal recognition particle lacks the alu-domain-binding proteins: purification and functional analysis of its binding proteins by rnai. J Cell Sci 118(19):4551–4562PubMedGoogle Scholar
  117. Manna PT, Kelly S, Field MC (2013) Adaptin evolution in kinetoplastids and emergence of the variant surface glycoprotein coat in african trypanosomatids. Mol Phylogenet Evol 67(1):123–128PubMedGoogle Scholar
  118. Manthri S, Guther MLS, Izquierdo L, Acosta-Serrano A, Ferguson MAJ (2008) Deletion of the tbalg3 gene demonstrates site-specific n-glycosylation and n-glycan processing in Trypanosoma brucei. Glycobiology 18(5):367–383PubMedGoogle Scholar
  119. Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27(8):295–306PubMedGoogle Scholar
  120. Mäser P, Sütterlin C, Kralli A, Kaminsky R (1999) A nucleoside transporter from Trypanosoma brucei involved in drug resistance. Science 285(5425):242–244PubMedGoogle Scholar
  121. May SF, Peacock L, Almeida Costa CI, Gibson WC, Tetley L, Robinson DR, Hammarton TC (2012) The Trypanosoma brucei AIR9-like protein is cytoskeleton-associated and is required for nucleus positioning and accurate cleavage furrow placement. Mol Microbiol 84(1):77–92PubMedGoogle Scholar
  122. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533PubMedGoogle Scholar
  123. Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445(7126):379–781PubMedGoogle Scholar
  124. Mehlert A, Treumann A, Ferguson MA (1999) Trypanosoma brucei GPEET-PARP is phosphorylated on six out of seven threonine residues. Mol Biochem Parasitol 98(2):291–296PubMedGoogle Scholar
  125. Misteli T (2005) Concepts in nuclear architecture. Bioessays 27(5):477–487PubMedGoogle Scholar
  126. Michels PA, Bringaud F, Herman M, Hannaert V (2006) Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta 1763(12):1463–1477PubMedGoogle Scholar
  127. Moremen KW, Molinari M (2006) N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr Opin Struct Biol 16(5):592–599PubMedGoogle Scholar
  128. Morriswood B, He CY, Sealey-Cardona M, Yelinek J, Pypaert M, Warren G (2009) The bilobe structure of Trypanosoma brucei contains a MORN-repeat protein. Mol Biochem Parasitol 167(2):95–103PubMedGoogle Scholar
  129. Morriswood B, Havlicek K, Demmel L, Yavuz S, Sealey-Cardona M, Vidilaseris K, Anrather D, Kostan J, Djinovic-Carugo K, Roux KJ, Warren G (2013) Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryot Cell 12(2):356–367PubMedGoogle Scholar
  130. Nagamune K, Nozaki T, Maeda Y, Ohishi K, Fukuma T, Hara T, Schwarz RT, Sutterlin C, Brun R, Riezman H, Kinoshita T (2000) Critical roles of glycosylphosphatidylinositol for Trypanosoma brucei. Proc Natl Acad Sci USA 97(19):10336–10341PubMedGoogle Scholar
  131. Natesan SKA, Peacock L, Matthews K, Gibson W, Field MC (2007) Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryot Cell 6(11):2029–2037PubMedGoogle Scholar
  132. Navarro M, Gull K (2001) A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 414(6865):759–763PubMedGoogle Scholar
  133. Nishikawa S-I, Fewell SW, Kato Y, Brodsky JL, Endo T (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153(5):1061–1070PubMedGoogle Scholar
  134. O’Beirne C, Lowry CM, Voorheis HP (1998) Both IgM and IgG anti-VSG antibodies initiate a cycle of aggregation-disaggregation of bloodstream forms of Trypanosoma brucei without damage to the parasite. Mol Biochem Parasitol 91(1):165–193PubMedGoogle Scholar
  135. Oberholzer M, Langousis G, Nguyen HT, Saada EA, Shimogawa MM, Jonsson ZO, Nguyen SM, Wohlschlegel JA, Hill KL (2011) Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Mol Cell Proteomics 10(10):M111.010538PubMedGoogle Scholar
  136. Ogbadoyi E, Ersfeld K, Robinson D, Sherwin T, Gull K (2000) Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108(8):501–513PubMedGoogle Scholar
  137. Ogbadoyi EO, Robinson DR, Gull K (2003) A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell 14(5):1769–1779PubMedGoogle Scholar
  138. Opperdoes FR, Borst P (1977) Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett 80(2):360–364PubMedGoogle Scholar
  139. Pal A, Hall BS, Nesbeth DN, Field HI, Field MC (2002) Differential endocytic functions of Trypanosoma brucei Rab5 isoforms reveal a glycosylphosphatidylinositol-specific endosomal pathway. J Biol Chem 277(11):9529–9539PubMedGoogle Scholar
  140. Pal A, Hall BS, Jeffries TR, Field MC (2003) Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochem J 374(Pt 2):443–451PubMedGoogle Scholar
  141. Pays E, Tebabi P, Pays A, Coquelet H, Revelard P, Salmon D, Steinert M (1989) The genes and transcripts of an antigen gene expression site from T. brucei. Cell 57(5):835–845PubMedGoogle Scholar
  142. Pays E, Vanhollebeke B, Vanhamme L, Paturiaux-Hanocq F, Nolan DP, Pérez-Morga D (2006) The trypanolytic factor of human serum. Nat Rev Microbiol 4(6):477–486PubMedGoogle Scholar
  143. Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3(3):pii: a000638Google Scholar
  144. Plemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and bip to retrograde protein transport for er degradation. Nature 388(6645):891–895PubMedGoogle Scholar
  145. Povelones ML, Gluenz E, Dembek M, Gull K, Rudenko G (2012) Histone H1 plays a role in heterochromatin formation and VSG expression site silencing in Trypanosoma brucei. PLoS Pathog 8(11):e1003010PubMedGoogle Scholar
  146. Pavelka M, Neumüller J, Ellinger A (2008) Retrograde traffic in the biosynthetic-secretory route. Histochem Cell Biol 129(3):277–288PubMedGoogle Scholar
  147. Price HP, Hodgkinson MR, Wright MH, Tate EW, Smith BA, Carrington M, Stark M, Smith DF (2012) A role for the vesicle-associated tubulin binding protein arl6 (bbs3) in flagellum extension in Trypanosoma brucei. Biochim Biophys Acta 1823(7):1178–1191PubMedGoogle Scholar
  148. Pullen TJ, Ginger ML, Gaskell SJ, Gull K (2004) Protein targeting of an unusual, evolutionarily conserved adenylate kinase to a eukaryotic flagellum. Mol Biol Cell 15(7):3257–3265PubMedGoogle Scholar
  149. Rodgers MJ, Albanesi JP, Phillips MA (2007) Phosphatidylinositol 4-kinase iii-β is required for golgi maintenance and cytokinesis in Trypanosoma brucei. Eukaryot Cell 6(7):1108–1118PubMedGoogle Scholar
  150. Roditi I, Schwarz H, Pearson TW, Beecroft RP, Liu MK, Richardson JP, Bühring HJ, Pleiss J, Bülow R, Williams RO et al (1989) Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J Cell Biol 108(2):737–746PubMedGoogle Scholar
  151. Rotureau B, Subota I, Bastin P (2011) Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle. Cell Microbiol 13(5):705–716PubMedGoogle Scholar
  152. Rotureau B, Subota I, Buisson J, Bastin P (2012) A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly. Development 139(10):1842–1850PubMedGoogle Scholar
  153. Rout MP, Field MC (2001) Isolation and characterization of subnuclear compartments from Trypanosoma brucei. Identification of a major repetitive nuclear lamina component. J Biol Chem 276(41):38261–38271PubMedGoogle Scholar
  154. Ruepp S, Furger A, Kurath U, Renggli CK, Hemphill A, Brun R, Roditi I (1997) Survival of Trypanosoma brucei in the tsetse fly is enhanced by the expression of specific forms of procyclin. J Cell Biol 137(6):1369–1379PubMedGoogle Scholar
  155. Sommer JM, Wang CC (1994) Targeting proteins to the glycosomes of African trypanosomes. Annu Rev Microbiol 48:105–138Google Scholar
  156. Sannerud R, Saraste J, Goud B (2003) Retrograde traffic in the biosynthetic-secretory route: pathways and machinery. Curr Opin Cell Biol 15(4):438–445PubMedGoogle Scholar
  157. Salmon D, Geuskens M, Hanocq F, Hanocq-Quertier J, Nolan D, Ruben L, Pays E (1994) A novel heterodimeric transferrin receptor encoded by a pair of VSG expression site-associated genes in T. brucei. Cell 78(1):75–86PubMedGoogle Scholar
  158. Salmon D, Bachmaier S, Krumbholz C, Kador M, Gossmann JA, Uzureau P, Pays E, Boshart M (2012a) Cytokinesis of Trypanosoma brucei bloodstream forms depends on expression of adenylyl cyclases of the ESAG4 or ESAG4-like subfamily. Mol Microbiol 84(2):225–242PubMedGoogle Scholar
  159. Salmon D, Vanwalleghem G, Morias Y, Denoeud J, Krumbholz C, Lhommé F, Bachmaier S, Kador M, Gossmann J, Dias FB, De Muylder G, Uzureau P, Magez S, Moser M, De Baetselier P, Van Den Abbeele J, Beschin A, Boshart M, Pays E (2012b) Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 337(6093):463–466PubMedGoogle Scholar
  160. Schwarz F, Aebi M (2011) Mechanisms and principles of n-linked protein glycosylation. Curr Opin Struct Biol 21(5):576–582PubMedGoogle Scholar
  161. Schwede A, Jones N, Engstler M, Carrington M (2011) The VSG C-terminal domain is inaccessible to antibodies on live trypanosomes. Mol Biochem Parasitol 175(2):201–204PubMedGoogle Scholar
  162. Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (2003) Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302(5653):2088–2094PubMedGoogle Scholar
  163. Seyfang A, Mecke D, Duszenko M (1990) Degradation, recycling, and shedding of Trypanosoma brucei variant surface glycoprotein. J Protozool 37(6):546–552PubMedGoogle Scholar
  164. Silverman JS, Bangs JD (2012) Form and function in the trypanosomal secretory pathway. Curr Opin Microbiol 15(4):463–468PubMedGoogle Scholar
  165. Silverman JS, Schwartz KJ, Hajduk SL, Bangs JD (2011) Late endosomal rab7 regulates lysosomal trafficking of endocytic but not biosynthetic cargo in Trypanosoma brucei. Mol Microbiol 82(3):664–678PubMedGoogle Scholar
  166. Spitznagel D, O’Rourke JF, Leddy N, Hanrahan O, Nolan DP (2010) Identification and characterization of an unusual class I myosin involved in vesicle traffic in Trypanosoma brucei. PLoS One 5(8):e12282PubMedGoogle Scholar
  167. Stanne TM, Rudenko G (2010) Active VSG expression sites in Trypanosoma brucei are depleted of nucleosomes. Eukaryot Cell 9(1):136–147PubMedGoogle Scholar
  168. Stanne TM, Kushwaha M, Wand M, Taylor JE, Rudenko G (2011) TbISWI regulates multiple polymerase I (Pol I)-transcribed loci and is present at Pol II transcription boundaries in Trypanosoma brucei. Eukaryot Cell 10(7):964–976PubMedGoogle Scholar
  169. Steverding D (1998) Bloodstream forms of Trypanosoma brucei require only small amounts of iron for growth. Parasitol Res 84(1):59–62PubMedGoogle Scholar
  170. Steverding D (2003) The significance of transferrin receptor variation in Trypanosoma brucei. Trends Parasitol 19(3):125–127PubMedGoogle Scholar
  171. Steverding D, Stierhof YD, Chaudhri M, Ligtenberg M, Schell D, Beck-Sickinger AG, Overath P (1994) ESAG 6 and 7 products of Trypanosoma brucei form a transferrin binding protein complex. Eur J Cell Biol 64(1):78–87PubMedGoogle Scholar
  172. Steverding D, Stierhof YD, Fuchs H, Tauber R, Overath P (1995) Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei. J Cell Biol 131(5):1173–1182PubMedGoogle Scholar
  173. Tazeh NN, Silverman JS, Schwartz KJ, Sevova ES, Sutterwala SS, Bangs JD (2009) Role of AP-1 in developmentally regulated lysosomal trafficking in Trypanosoma brucei. Eukaryot Cell 8(9):1352–1361PubMedGoogle Scholar
  174. Thiry M, Lafontaine DL (2005) Birth of a nucleolus: the evolution of nucleolar compartments. Trends Cell Biol 15(4):194–199PubMedGoogle Scholar
  175. Tkacz ID, Lustig Y, Stern MZ, Biton M, Salmon-Divon M, Das A, Bellofatto V, Michaeli S (2007) Identification of novel snRNA-specific Sm proteins that bind selectively to U2 and U4 snRNAs in Trypanosoma brucei. RNA 13(1):30–43PubMedGoogle Scholar
  176. Treumann A, Zitzmann N, Hülsmeier A, Prescott AR, Almond A, Sheehan J, Ferguson MA (1997) Structural characterisation of two forms of procyclic acidic repetitive protein expressed by procyclic forms of Trypanosoma brucei. J Mol Biol 269(4):529–547PubMedGoogle Scholar
  177. Tyler KM, Fridberg A, Toriello KM, Olson CL, Cieslak JA, Hazlett TL, Engman DM (2009) Flagellar membrane localization via association with lipid rafts. J Cell Sci 122(6):859–866PubMedGoogle Scholar
  178. Urwyler S, Studer E, Renggli CK, Roditi I (2007) A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei. Mol Microbiol 63(1):218–228PubMedGoogle Scholar
  179. van Dam TPJ, Townsend MJ, Turk M, Schlessinger A, Sali A, Field MC, Huynen M (2013) Intraflagellar transport is a modular complex that evolved from a coatomer-like protein complex. Proc Natl Acad Sci USA 110(17):6943–6948PubMedGoogle Scholar
  180. van Luenen HG, Kieft R, Mussmann R, Engstler M, ter Riet B, Borst P (2005) Trypanosomes change their transferrin receptor expression to allow effective uptake of host transferrin. Mol Microbiol 58(1):151–165PubMedGoogle Scholar
  181. Vanhollebeke B, De Muylder G, Nielsen MJ, Pays A, Tebabi P, Dieu M, Raes M, Moestrup SK, Pays E (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320(5876):677–681PubMedGoogle Scholar
  182. Vassella E, Den Abbeele JV, Bütikofer P, Renggli CK, Furger A, Brun R, Roditi I (2000) A major surface glycoprotein of Trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes Dev 14(5):615–626PubMedGoogle Scholar
  183. Vassella E, Bütikofer P, Engstler M, Jelk J, Roditi I (2003) Procyclin null mutants of Trypanosoma brucei express free glycosylphosphatidylinositols on their surface. Mol Biol Cell 14(4):1308–1318PubMedGoogle Scholar
  184. Vassella E, Oberle M, Urwyler S, Renggli CK, Studer E, Hemphill A, Fragoso C, Bütikofer P, Brun R, Roditi I (2009) Major surface glycoproteins of insect forms of Trypanosoma brucei are not essential for cyclical transmission by tsetse. PLoS One 4(2):e4493PubMedGoogle Scholar
  185. Vickerman K, Luckins AG (1969) Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature 224(5224):1125–1126PubMedGoogle Scholar
  186. Weiße S, Heddergott N, Heydt M, Pflästerer D, Maier T, Haraszti T, Grunze M, Engstler M, Rosenhahn A (2012) A quantitative 3D motility analysis of Trypanosoma brucei by use of digital in-line holographic microscopy. PLoS One 7(5):e37296PubMedGoogle Scholar
  187. Widener J, Nielsen MJ, Shiflett A, Moestrup SK, Hajduk S (2007) Hemoglobin is a co-factor of human trypanosome lytic factor. PLoS Pathog 3(9):1250–1261PubMedGoogle Scholar
  188. Xong HV, Vanhamme L, Chamekh M, Chimfwembe CE, Van Den Abbeele J, Pays A, Van Meirvenne N, Hamers R, De Baetselier P, Pays E (1998) A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95(6):839–846PubMedGoogle Scholar
  189. Yang X, Figueiredo LM, Espinal A, Okubo E, Li B (2009) RAP1 is essential for silencing telomeric variant surface glycoprotein genes in Trypanosoma brucei. Cell 137(1):99–109PubMedGoogle Scholar
  190. Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R (2011) Copii and the regulation of protein sorting in mammals. Nat Cell Biol 14(1):20–28 (Erratum in 2012)Google Scholar
  191. Zeiner GM, Sturm NR, Campbell DA (2003) Exportin 1 mediates nuclear export of the kinetoplastid spliced leader RNA. Eukaryot Cell 2(2):222–230PubMedGoogle Scholar
  192. Zhao Z, Lindsay ME, Roy Chowdhury A, Robinson DR, Englund PT (2008) p166, a link between the trypanosome mitochondrial DNA and flagellum, mediates genome segregation. EMBO J 27(1):143–154PubMedGoogle Scholar
  193. Zhou Q, Gheiratmand L, Chen Y, Lim TK, Zhang J, Li S, Xia N, Liu B, Lin Q, He CY (2010) A comparative proteomic analysis reveals a new bi-lobe protein required for bi-lobe duplication and cell division in Trypanosoma brucei. PLoS One 5(3):e9660PubMedGoogle Scholar
  194. Ziegelbauer K, Overath P (1992) Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei. J Biol Chem 267(15):10791–10796PubMedGoogle Scholar
  195. Ziegelbauer K, Overath P (1993) Organization of two invariant surface glycoproteins in the surface coat of Trypanosoma brucei. Infect Immun 61(11):4540–4545PubMedGoogle Scholar
  196. Ziegelbauer K, Multhaup G, Overath P (1992) Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of Trypanosoma brucei. J Biol Chem 267(15):10797–10803PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Ka Fai Leung
    • 1
  • Paul T. Manna
    • 1
  • Cordula Boehm
    • 1
  • Luke Maishman
    • 1
  • Mark C. Field
    • 1
    Email author
  1. 1.Department of PathologyUniversity of CambridgeCambridgeUK

Personalised recommendations