Pathogenesis of Intervertebral Disc Degeneration

  • Stephen M. Richardson
  • Anthony J. Freemont
  • Judith A. HoylandEmail author


It is estimated that as much as 84 % of the population will suffer from low back pain (LBP) at some point in their lifetime (Walker 2000), with around 10 % of sufferers being chronically disabled. As such LBP is one of the most prevalent musculoskeletal conditions affecting Western society (Stewart et al. 2003), and its prevalence has increased over recent decades (Harkness et al. 2005). The socio-economic cost of LBP is also huge, with associated costs, in terms of lost productivity, disability benefits and direct and indirect health-care costs, estimated in the UK to be around £12 billion annually (Maniadakis and Gray 2000) and in the USA to be over $85 billion per annum (Martin et al. 2008). Importantly, increases in both the size and average age of the population both suggest that the prevalence and costs associated with LBP will continue to rise over future decades, unless novel therapies can be developed to alleviate pain and restore long-term function and mobility to the spine. However, in order to develop such therapies, a more thorough understanding of the underlying aetiology is required.


Intervertebral Disc Nucleus Pulposus Disc Degeneration Annulus Fibrosus Nucleus Pulposus Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by grants from the Biotechnology and Biological Sciences Research Council (BBSRC), Arthritis Research UK (ARUK) and Research Councils UK (RCUK).


  1. Abbaszade I, Liu RQ, Yang F, Rosenfeld SA, Ross OH, Link JR, Ellis DM, Tortorella MD, Pratta MA, Hollis JM, Wynn R, Duke JL, George HJ, Hillman MC Jr, Murphy K, Wiswall BH, Copeland RA, Decicco CP, Bruckner R, Nagase H, Itoh Y, Newton RC, Magolda RL, Trzaskos JM, Burn TC et al (1999) Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem 274:23443–23450PubMedCrossRefGoogle Scholar
  2. Abe Y, Akeda K, An HS, Aoki Y, Pichika R, Muehleman C, Kimura T, Masuda K (2007) Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells. Spine (Phila Pa 1976) 32:635–642CrossRefGoogle Scholar
  3. Adams MA, Hutton WC (1986) The effect of posture on diffusion into lumbar intervertebral discs. J Anat 147:121–134PubMedGoogle Scholar
  4. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31:2151–2161CrossRefGoogle Scholar
  5. Adams MA, Mannion AF, Dolan P (1999) Personal risk factors for first-time low back pain. Spine (Phila Pa 1976) 24:2497–2505CrossRefGoogle Scholar
  6. Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine (Phila Pa 1976) 25:1625–1636CrossRefGoogle Scholar
  7. Adams MA, Stefanakis M, Dolan P (2010) Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: implications for physical therapies for discogenic back pain. Clin Biomech (Bristol, Avon) 25:961–971CrossRefGoogle Scholar
  8. Akyol S, Eraslan BS, Etyemez H, Tanriverdi T, Hanci M (2010) Catabolic cytokine expressions in patients with degenerative disc disease. Turk Neurosurg 20:492–499PubMedGoogle Scholar
  9. Ali R, Le Maitre CL, Richardson SM, Hoyland JA, Freemont AJ (2008) Connective tissue growth factor expression in human intervertebral disc: implications for angiogenesis in intervertebral disc degeneration. Biotech Histochem 83:239–245PubMedCrossRefGoogle Scholar
  10. Alini M, Roughley PJ, Antoniou J, Stoll T, Aebi M (2002) A biological approach to treating disc degeneration: not for today, but maybe for tomorrow. Eur Spine J 11(Suppl 2):S215–S220PubMedGoogle Scholar
  11. Alvarez L, Ortiz A (1999) The study of apoptosis in spine pathology. Spine (Phila Pa 1976) 24:500CrossRefGoogle Scholar
  12. An HS, Takegami K, Kamada H, Nguyen CM, Thonar EJ, Singh K, Andersson GB, Masuda K (2005) Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine (Phila Pa 1976) 30:25–31Google Scholar
  13. Anderson DG, Li X, Balian G (2005) A fibronectin fragment alters the metabolism by rabbit intervertebral disc cells in vitro. Spine (Phila Pa 1976) 30:1242–1246CrossRefGoogle Scholar
  14. Annunen S, Paassilta P, Lohiniva J, Perala M, Pihlajamaa T, Karppinen J, Tervonen O, Kroger H, Lahde S, Vanharanta H, Ryhanen L, Goring HH, Ott J, Prockop DJ, la-Kokko L (1999) An allele of COL9A2 associated with intervertebral disc disease. Science 285:409–412PubMedCrossRefGoogle Scholar
  15. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003PubMedCrossRefGoogle Scholar
  16. Antoniou J, Pike GB, Steffen T, Baramki H, Poole AR, Aebi M, Alini M (1998) Quantitative magnetic resonance imaging in the assessment of degenerative disc disease. Magn Reson Med 40:900–907PubMedCrossRefGoogle Scholar
  17. Aota Y, An HS, Homandberg G, Thonar EJ, Andersson GB, Pichika R, Masuda K (2005) Differential effects of fibronectin fragment on proteoglycan metabolism by intervertebral disc cells: a comparison with articular chondrocytes. Spine (Phila Pa 1976) 30:722–728CrossRefGoogle Scholar
  18. Ariga K, Yonenobu K, Nakase T, Kaneko M, Okuda S, Uchiyama Y, Yoshikawa H (2001) Localization of cathepsins D, K, and L in degenerated human intervertebral discs. Spine (Phila Pa 1976) 26:2666–2672CrossRefGoogle Scholar
  19. Ashton IK, Roberts S, Jaffray DC, Polak JM, Eisenstein SM (1994) Neuropeptides in the human intervertebral disc. J Orthop Res 12:186–192PubMedCrossRefGoogle Scholar
  20. Bachmeier BE, Nerlich AG, Weiler C, Paesold G, Jochum M, Boos N (2007) Analysis of tissue distribution of TNF-alpha, TNF-alpha-receptors, and the activating TNF-alpha-converting enzyme suggests activation of the TNF-alpha system in the aging intervertebral disc. Ann N Y Acad Sci 1096:44–54PubMedCrossRefGoogle Scholar
  21. Bachmeier BE, Nerlich A, Mittermaier N, Weiler C, Lumenta C, Wuertz K, Boos N (2009) Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur Spine J 18:1573–1586PubMedCrossRefGoogle Scholar
  22. Barksby HE, Milner JM, Patterson AM, Peake NJ, Hui W, Robson T, Lakey R, Middleton J, Cawston TE, Richards CD, Rowan AD (2006) Matrix metalloproteinase 10 promotion of collagenolysis via procollagenase activation: implications for cartilage degradation in arthritis. Arthritis Rheum 54:3244–3253PubMedCrossRefGoogle Scholar
  23. Bartels EM, Fairbank JC, Winlove CP, Urban JP (1998) Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain. Spine (Phila Pa 1976) 23:1–7CrossRefGoogle Scholar
  24. Beard HK, Roberts S, O’Brien JP (1981) Immunofluorescent staining for collagen and proteoglycan in normal and scoliotic intervertebral discs. J Bone Joint Surg Br 63B:529–534PubMedGoogle Scholar
  25. Bernick S, Cailliet R (1982) Vertebral end-plate changes with aging of human vertebrae. Spine (Phila Pa 1976) 7:97–102CrossRefGoogle Scholar
  26. Bibby SR, Urban JP (2004) Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur Spine J 13:695–701PubMedCrossRefGoogle Scholar
  27. Bibby SR, Fairbank JC, Urban MR, Urban JP (2002) Cell viability in scoliotic discs in relation to disc deformity and nutrient levels. Spine (Phila Pa 1976) 27:2220–2228CrossRefGoogle Scholar
  28. Bogduk N (2004) Management of chronic low back pain. Med J Aust 180:79–83PubMedGoogle Scholar
  29. Boos N, Nerlich AG, Wiest I, von der Mark K, Aebi M (1997) Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem Cell Biol 108:471–480PubMedCrossRefGoogle Scholar
  30. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Phila Pa 1976) 27:2631–2644CrossRefGoogle Scholar
  31. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283PubMedCrossRefGoogle Scholar
  32. Brodin H (1955) Paths of nutrition in articular cartilage and intervertebral discs. Acta Orthop Scand 24:177–183PubMedGoogle Scholar
  33. Brown MF, Hukkanen MV, McCarthy ID, Redfern DR, Batten JJ, Crock HV, Hughes SP, Polak JM (1997) Sensory and sympathetic innervation of the vertebral endplate in patients with degenerative disc disease. J Bone Joint Surg Br 79:147–153PubMedCrossRefGoogle Scholar
  34. Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) 20:1307–1314Google Scholar
  35. Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, Lopez-Otin C (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283:49–62PubMedCrossRefGoogle Scholar
  36. Cappello R, Bird JL, Pfeiffer D, Bayliss MT, Dudhia J (2006) Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine (Phila Pa 1976) 31:873–882CrossRefGoogle Scholar
  37. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A 92:4337–4341PubMedCrossRefGoogle Scholar
  38. Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) 34:934–940CrossRefGoogle Scholar
  39. Chubinskaya S, Kawakami M, Rappoport L, Matsumoto T, Migita N, Rueger DC (2007) Anti-catabolic effect of OP-1 in chronically compressed intervertebral discs. J Orthop Res 25:517–530PubMedCrossRefGoogle Scholar
  40. Collins-Racie LA, Flannery CR, Zeng W, Corcoran C, Annis-Freeman B, Agostino MJ, Arai M, DiBlasio-Smith E, Dorner AJ, Georgiadis KE, Jin M, Tan XY, Morris EA, LaVallie ER (2004) ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol 23:219–230PubMedCrossRefGoogle Scholar
  41. Cooper TW, Eisen AZ, Stricklin GP, Welgus HG (1985) Platelet-derived collagenase inhibitor: characterization and subcellular localization. Proc Natl Acad Sci U S A 82:2779–2783PubMedCrossRefGoogle Scholar
  42. Coppes MH, Marani E, Thomeer RT, Groen GJ (1997) Innervation of “painful” lumbar discs. Spine (Phila Pa 1976) 22:2342–2349CrossRefGoogle Scholar
  43. Cs-Szabo G, Ragasa-San JD, Turumella V, Masuda K, Thonar EJ, An HS (2002) Changes in mRNA and protein levels of proteoglycans of the anulus fibrosus and nucleus pulposus during intervertebral disc degeneration. Spine (Phila Pa 1976) 27:2212–2219CrossRefGoogle Scholar
  44. Cui LY, Liu SL, Ding Y, Huang DS, Ma RF, Huang WG, Hu BS, Pan QH (2007) IL-1beta sensitizes rat intervertebral disc cells to Fas ligand mediated apoptosis in vitro. Acta Pharmacol Sin 28:1671–1676PubMedCrossRefGoogle Scholar
  45. Dai SM, Shan ZZ, Nakamura H, Masuko-Hongo K, Kato T, Nishioka K, Yudoh K (2006) Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum 54:818–831PubMedCrossRefGoogle Scholar
  46. Delamarter R, Zigler JE, Balderston RA, Cammisa FP, Goldstein JA, Spivak JM (2011) Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement compared with circumferential arthrodesis for the treatment of two-level lumbar degenerative disc disease: results at twenty-four months. J Bone Joint Surg Am 93:705–715PubMedCrossRefGoogle Scholar
  47. Demircan K, Hirohata S, Nishida K, Hatipoglu OF, Oohashi T, Yonezawa T, Apte SS, Ninomiya Y (2005) ADAMTS-9 is synergistically induced by interleukin-1beta and tumor necrosis factor alpha in OUMS-27 chondrosarcoma cells and in human chondrocytes. Arthritis Rheum 52:1451–1460PubMedCrossRefGoogle Scholar
  48. Deyo RA, Bass JE (1989) Lifestyle and low-back pain. The influence of smoking and obesity. Spine (Phila Pa 1976) 14:501–506CrossRefGoogle Scholar
  49. Di MA, Vaccaro AR, Lee JY, Denaro V, Lim MR (2005) Nucleus pulposus replacement: basic science and indications for clinical use. Spine 30:S16–S22CrossRefGoogle Scholar
  50. Duance VC, Crean JK, Sims TJ, Avery N, Smith S, Menage J, Eisenstein SM, Roberts S (1998) Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine (Phila Pa 1976) 23:2545–2551CrossRefGoogle Scholar
  51. Errico TJ (2005) Lumbar disc arthroplasty. Clin Orthop Relat Res 435:106–117Google Scholar
  52. Eyre DR, Muir H (1976) Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem J 157:267–270PubMedGoogle Scholar
  53. Feng H, Danfelter M, Stromqvist B, Heinegard D (2006) Extracellular matrix in disc degeneration. J Bone Joint Surg Am 88(Suppl 2):25–29PubMedCrossRefGoogle Scholar
  54. Freemont AJ, Peacock TE, Goupille P, Hoyland JA, O’Brien J, Jayson MI (1997) Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 350:178–181PubMedCrossRefGoogle Scholar
  55. Freemont AJ, Watkins A, Le MC, Baird P, Jeziorska M, Knight MT, Ross ER, O’Brien JP, Hoyland JA (2002) Nerve growth factor expression and innervation of the painful intervertebral disc. J Pathol 197:286–292PubMedCrossRefGoogle Scholar
  56. Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30:1536–1548PubMedCrossRefGoogle Scholar
  57. Frino J, McCarthy RE, Sparks CY, McCullough FL (2006) Trends in adolescent lumbar disk herniation. J Pediatr Orthop 26:579–581PubMedCrossRefGoogle Scholar
  58. Gabr MA, Jing L, Helbling AR, Sinclair SM, Allen KD, Shamji MF, Richardson WJ, Fitch RD, Setton LA, Chen J (2011) Interleukin-17 synergizes with IFNgamma or TNFalpha to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells. J Orthop Res 29:1–7PubMedCrossRefGoogle Scholar
  59. Garcia-Cosamalon J, del Valle ME, Calavia MG, Garcia-Suarez O, Lopez-Muniz A, Otero J, Vega JA (2010) Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat 217:1–15PubMedCrossRefGoogle Scholar
  60. Gilbert HT, Hoyland JA, Millward-Sadler SJ (2010) The response of human anulus fibrosus cells to cyclic tensile strain is frequency-dependent and altered with disc degeneration. Arthritis Rheum 62:3385–3394PubMedCrossRefGoogle Scholar
  61. Gilbert HT, Hoyland JA, Freemont AJ, Millward-Sadler SJ (2011) The involvement of interleukin-1 and interleukin-4 in the response of human annulus fibrosus cells to cyclic tensile strain: an altered mechanotransduction pathway with degeneration. Arthritis Res Ther 13:R8PubMedCrossRefGoogle Scholar
  62. Gilbertson L, Ahn SH, Teng PN, Studer RK, Niyibizi C, Kang JD (2008) The effects of recombinant human bone morphogenetic protein-2, recombinant human bone morphogenetic protein-12, and adenoviral bone morphogenetic protein-12 on matrix synthesis in human annulus fibrosis and nucleus pulposus cells. Spine J 8:449–456PubMedCrossRefGoogle Scholar
  63. Greg AD, Li X, Tannoury T, Beck G, Balian G (2003) A fibronectin fragment stimulates intervertebral disc degeneration in vivo. Spine (Phila Pa 1976) 28:2338–2345CrossRefGoogle Scholar
  64. Gruber HE, Hanley EN Jr (1998) Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine (Phila Pa 1976) 23:751–757CrossRefGoogle Scholar
  65. Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G, Hanley EN Jr (1997) Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res 235:13–21PubMedCrossRefGoogle Scholar
  66. Gruber HE, Norton HJ, Hanley EN Jr (2000) Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro. Spine (Phila Pa 1976) 25:2153–2157CrossRefGoogle Scholar
  67. Gruber HE, Ingram JA, Hanley EN Jr (2005) Immunolocalization of MMP-19 in the human intervertebral disc: implications for disc aging and degeneration. Biotech Histochem 80:157–162PubMedCrossRefGoogle Scholar
  68. Gruber HE, Ingram JA, Norton HJ, Hanley EN Jr (2007) Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs. Spine (Phila Pa 1976) 32:321–327CrossRefGoogle Scholar
  69. Gruber HE, Ingram JA, Hoelscher G, Zinchenko N, Norton HJ, Hanley EN Jr (2008) Brain-derived neurotrophic factor and its receptor in the human and the sand rat intervertebral disc. Arthritis Res Ther 10:R82PubMedCrossRefGoogle Scholar
  70. Guehring T, Urban JP, Cui Z, Tirlapur UK (2008) Noninvasive 3D vital imaging and characterization of notochordal cells of the intervertebral disc by femtosecond near-infrared two-photon laser scanning microscopy and spatial-volume rendering. Microsc Res Tech 71:298–304PubMedCrossRefGoogle Scholar
  71. Guyer RD, McAfee PC, Banco RJ, Bitan FD, Cappuccino A, Geisler FH, Hochschuler SH, Holt RT, Jenis LG, Majd ME, Regan JJ, Tromanhauser SG, Wong DC, Blumenthal SL (2009) Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: five-year follow-up. Spine J 9:374–386PubMedCrossRefGoogle Scholar
  72. Ha KY, Koh IJ, Kirpalani PA, Kim YY, Cho YK, Khang GS, Han CW (2006) The expression of hypoxia inducible factor-1alpha and apoptosis in herniated discs. Spine (Phila Pa 1976) 31:1309–1313CrossRefGoogle Scholar
  73. Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K (1997) Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine (Phila Pa 1976) 22:1085–1091CrossRefGoogle Scholar
  74. Harkness EF, Macfarlane GJ, Silman AJ, McBeth J (2005) Is musculoskeletal pain more common now than 40 years ago?: Two population-based cross-sectional studies. Rheumatology (Oxford) 44:890–895CrossRefGoogle Scholar
  75. Haro H, Kato T, Komori H, Osada M, Shinomiya K (2002) Vascular endothelial growth factor (VEGF)-induced angiogenesis in herniated disc resorption. J Orthop Res 20:409–415PubMedCrossRefGoogle Scholar
  76. Hatano E, Fujita T, Ueda Y, Okuda T, Katsuda S, Okada Y, Matsumoto T (2006) Expression of ADAMTS-4 (aggrecanase-1) and possible involvement in regression of lumbar disc herniation. Spine (Phila Pa 1976) 31:1426–1432CrossRefGoogle Scholar
  77. Heathfield SK, Le Maitre CL, Hoyland JA (2008) Caveolin-1 expression and stress-induced premature senescence in human intervertebral disc degeneration. Arthritis Res Ther 10:R87PubMedCrossRefGoogle Scholar
  78. Heyde CE, Tschoeke SK, Hellmuth M, Hostmann A, Ertel W, Oberholzer A (2006) Trauma induces apoptosis in human thoracolumbar intervertebral discs. BMC Clin Pathol 6:5PubMedCrossRefGoogle Scholar
  79. Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4:190S–194SPubMedCrossRefGoogle Scholar
  80. Hirano N, Tsuji H, Ohshima H, Kitano S, Itoh T, Sano A (1988) Analysis of rabbit intervertebral disc physiology based on water metabolism. II. Changes in normal intervertebral discs under axial vibratory load. Spine (Phila Pa 1976) 13:1297–1302CrossRefGoogle Scholar
  81. Holm S, Nachemson A (1982) Nutritional changes in the canine intervertebral disc after spinal fusion. Clin Orthop Relat Res 169:243–258Google Scholar
  82. Holm S, Nachemson A (1983) Variations in the nutrition of the canine intervertebral disc induced by motion. Spine (Phila Pa 1976) 8:866–874CrossRefGoogle Scholar
  83. Holm S, Nachemson A (1988) Nutrition of the intervertebral disc: acute effects of cigarette smoking. An experimental animal study. Ups J Med Sci 93:91–99PubMedGoogle Scholar
  84. Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8:101–119PubMedCrossRefGoogle Scholar
  85. Homandberg GA, Hui F, Wen C, Purple C, Bewsey K, Koepp H, Huch K, Harris A (1997) Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J 321(Pt 3):751–757PubMedGoogle Scholar
  86. Homma Y, Tsunoda M, Kasai H (1994) Evidence for the accumulation of oxidative stress during cellular ageing of human diploid fibroblasts. Biochem Biophys Res Commun 203:1063–1068PubMedCrossRefGoogle Scholar
  87. Hormel SE, Eyre DR (1991) Collagen in the ageing human intervertebral disc: an increase in covalently bound fluorophores and chromophores. Biochim Biophys Acta 1078:243–250PubMedCrossRefGoogle Scholar
  88. Horner HA, Urban JP (2001) 2001 Volvo Award Winner in Basic Science Studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976) 26:2543–2549CrossRefGoogle Scholar
  89. Hoyland JA, Le MC, Freemont AJ (2008) Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc. Rheumatology (Oxford) 47:809–814CrossRefGoogle Scholar
  90. Humzah MD, Soames RW (1988) Human intervertebral disc: structure and function. Anat Rec 220:337–356PubMedCrossRefGoogle Scholar
  91. Hutton WC, Adams MA (1982) Can the lumbar spine be crushed in heavy lifting? Spine (Phila Pa 1976) 7:586–590CrossRefGoogle Scholar
  92. Igarashi T, Kikuchi S, Shubayev V, Myers RR (2000) 2000 Volvo Award winner in basic science studies: exogenous tumor necrosis factor-alpha mimics nucleus pulposus-induced neuropathology. Molecular, histologic, and behavioral comparisons in rats. Spine (Phila Pa 1976) 25:2975–2980CrossRefGoogle Scholar
  93. Imai Y, Miyamoto K, An HS, Thonar EJ, Andersson GB, Masuda K (2007a) Recombinant human osteogenic protein-1 upregulates proteoglycan metabolism of human anulus fibrosus and nucleus pulposus cells. Spine (Phila Pa 1976) 32:1303–1309CrossRefGoogle Scholar
  94. Imai Y, Okuma M, An HS, Nakagawa K, Yamada M, Muehleman C, Thonar E, Masuda K (2007b) Restoration of disc height loss by recombinant human osteogenic protein-1 injection into intervertebral discs undergoing degeneration induced by an intradiscal injection of chondroitinase ABC. Spine (Phila Pa 1976) 32:1197–1205CrossRefGoogle Scholar
  95. Inkinen RI, Lammi MJ, Lehmonen S, Puustjarvi K, Kaapa E, Tammi MI (1998) Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc. J Rheumatol 25:506–514PubMedGoogle Scholar
  96. Ishihara H, Urban JP (1999) Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res 17:829–835PubMedCrossRefGoogle Scholar
  97. Jackson AR, Huang CY, Gu WY (2011) Effect of endplate calcification and mechanical deformation on the distribution of glucose in intervertebral disc: a 3D finite element study. Comput Methods Biomech Biomed Engin 14:195–204PubMedCrossRefGoogle Scholar
  98. Jin D, Qu D, Zhao L, Chen J, Jiang J (2003) Prosthetic disc nucleus (PDN) replacement for lumbar disc herniation: preliminary report with six months’ follow-up. J Spinal Disord Tech 16:331–337PubMedCrossRefGoogle Scholar
  99. Johnson WE, Roberts S (2007) ‘Rumours of my death may have been greatly exaggerated’: a brief review of cell death in human intervertebral disc disease and implications for cell transplantation therapy. Biochem Soc Trans 35:680–682PubMedCrossRefGoogle Scholar
  100. Johnson WE, Eisenstein SM, Roberts S (2001) Cell cluster formation in degenerate lumbar intervertebral discs is associated with increased disc cell proliferation. Connect Tissue Res 42:197–207PubMedCrossRefGoogle Scholar
  101. Johnson WE, Caterson B, Eisenstein SM, Hynds DL, Snow DM, Roberts S (2002) Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis Rheum 46:2658–2664PubMedCrossRefGoogle Scholar
  102. Johnson WE, Caterson B, Eisenstein SM, Roberts S (2005) Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro. Spine (Phila Pa 1976) 30:1139–1147CrossRefGoogle Scholar
  103. Johnson WE, Sivan S, Wright KT, Eisenstein SM, Maroudas A, Roberts S (2006) Human intervertebral disc cells promote nerve growth over substrata of human intervertebral disc aggrecan. Spine (Phila Pa 1976) 31:1187–1193CrossRefGoogle Scholar
  104. Johnson WE, Patterson AM, Eisenstein SM, Roberts S (2007) The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularization: an immunohistologic study. Spine (Phila Pa 1976) 32:1295–1302CrossRefGoogle Scholar
  105. Jones P, Gardner L, Menage J, Williams GT, Roberts S (2008) Intervertebral disc cells as competent phagocytes in vitro: implications for cell death in disc degeneration. Arthritis Res Ther 10:R86PubMedCrossRefGoogle Scholar
  106. Kang JD, Georgescu HI, Intyre-Larkin L, Stefanovic-Racic M, Donaldson WF III, Evans CH (1996) Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine (Phila Pa 1976) 21:271–277CrossRefGoogle Scholar
  107. Kashiwagi M, Tortorella M, Nagase H, Brew K (2001) TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 276:12501–12504PubMedCrossRefGoogle Scholar
  108. Katsuura A, Hukuda S (1994) Experimental study of intervertebral disc allografting in the dog. Spine 19:2426–2432PubMedCrossRefGoogle Scholar
  109. Katz MM, Hargens AR, Garfin SR (1986) Intervertebral disc nutrition. Diffusion versus convection. Clin Orthop Relat Res (210):243–245Google Scholar
  110. Kawaguchi Y, Kanamori M, Ishihara H, Ohmori K, Matsui H, Kimura T (2002) The association of lumbar disc disease with vitamin-D receptor gene polymorphism. J Bone Joint Surg Am 84-A:2022–2028PubMedGoogle Scholar
  111. Kawakami M, Matsumoto T, Hashizume H, Kuribayashi K, Chubinskaya S, Yoshida M (2005) Osteogenic protein-1 (osteogenic protein-1/bone morphogenetic protein-7) inhibits degeneration and pain-related behavior induced by chronically compressed nucleus pulposus in the rat. Spine (Phila Pa 1976) 30:1933–1939CrossRefGoogle Scholar
  112. Kim KW, Kim YS, Ha KY, Woo YK, Park JB, Park WS, An HS (2005) An autocrine or paracrine Fas-mediated counterattack: a potential mechanism for apoptosis of notochordal cells in intact rat nucleus pulposus. Spine (Phila Pa 1976) 30:1247–1251CrossRefGoogle Scholar
  113. Kim KW, Chung HN, Ha KY, Lee JS, Kim YY (2009) Senescence mechanisms of nucleus pulposus chondrocytes in human intervertebral discs. Spine J 9:658–666PubMedCrossRefGoogle Scholar
  114. Klawitter M, Quero L, Bertolo A, Mehr M, Stoyanov J, Nerlich AG, Klasen J, Aebli N, Boos N, Wuertz K (2011) Human MMP28 expression is unresponsive to inflammatory stimuli and does not correlate to the grade of intervertebral disc degeneration. J Negat Results Biomed 10:9PubMedCrossRefGoogle Scholar
  115. Kolodkin AL, Matthes DJ, Goodman CS (1993) The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75:1389–1399PubMedCrossRefGoogle Scholar
  116. Konttinen YT, Kaapa E, Hukkanen M, Gu XH, Takagi M, Santavirta S, Alaranta H, Li TF, Suda A (1999) Cathepsin G in degenerating and healthy discal tissue. Clin Exp Rheumatol 17:197–204PubMedGoogle Scholar
  117. Korecki CL, Kuo CK, Tuan RS, Iatridis JC (2009) Intervertebral disc cell response to dynamic compression is age and frequency dependent. J Orthop Res 27:800–806PubMedCrossRefGoogle Scholar
  118. Le Maitre CL, Freemont AJ, Hoyland JA (2004) Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 204:47–54PubMedCrossRefGoogle Scholar
  119. Le Maitre CL, Freemont AJ, Hoyland JA (2005a) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7:R732–R745PubMedCrossRefGoogle Scholar
  120. Le Maitre CL, Richardson SM, Baird P, Freemont AJ, Hoyland JA (2005b) Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc. J Pathol 207:445–452PubMedCrossRefGoogle Scholar
  121. Le Maitre CL, Freemont AJ, Hoyland JA (2006a) A preliminary in vitro study into the use of IL-1Ra gene therapy for the inhibition of intervertebral disc degeneration. Int J Exp Pathol 87:17–28PubMedCrossRefGoogle Scholar
  122. Le Maitre CL, Freemont AJ, Hoyland JA (2006b) Human disc degeneration is associated with increased MMP 7 expression. Biotech Histochem 81:125–131PubMedCrossRefGoogle Scholar
  123. Le Maitre CL, Freemont AJ, Hoyland JA (2007a) Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther 9:R45PubMedCrossRefGoogle Scholar
  124. Le Maitre CL, Hoyland JA, Freemont AJ (2007b) Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther 9:R77PubMedCrossRefGoogle Scholar
  125. Le Maitre CL, Hoyland JA, Freemont AJ (2007c) Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study. Arthritis Res Ther 9:R83PubMedCrossRefGoogle Scholar
  126. Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA (2007d) Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans 35:652–655PubMedCrossRefGoogle Scholar
  127. Le Maitre CL, Frain J, Fotheringham AP, Freemont AJ, Hoyland JA (2008) Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure. Biorheology 45:563–575PubMedGoogle Scholar
  128. Le Maitre CL, Freemont AJ, Hoyland JA (2009) Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells. Arthritis Res Ther 11:R137PubMedCrossRefGoogle Scholar
  129. Lee CR, Sakai D, Nakai T, Toyama K, Mochida J, Alini M, Grad S (2007) A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur Spine J 16:2174–2185PubMedCrossRefGoogle Scholar
  130. Lee JM, Song JY, Baek M, Jung HY, Kang H, Han IB, Kwon YD, Shin DE (2011) Interleukin-1beta induces angiogenesis and innervation in human intervertebral disc degeneration. J Orthop Res 29:265–269PubMedCrossRefGoogle Scholar
  131. Lindley EM, Jaafar S, Noshchenko A, Baldini T, Nair DP, Shandas R, Burger EL, Patel VV (2010) Nucleus replacement device failure: a case report and biomechanical study. Spine (Phila Pa 1976) 35:E1241–E1247CrossRefGoogle Scholar
  132. Loreto C, Musumeci G, Castorina A, Loreto C, Martinez G (2011) Degenerative disc disease of herniated intervertebral discs is associated with extracellular matrix remodeling, vimentin-positive cells and cell death. Ann Anat 193:156–162PubMedCrossRefGoogle Scholar
  133. Lotz JC, Chin JR (2000) Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine (Phila Pa 1976) 25:1477–1483CrossRefGoogle Scholar
  134. Luk KD, Ruan DK, Chow DH, Leong JC (1997) Intervertebral disc autografting in a bipedal animal model. Clin Orthop Relat Res 337:13–26Google Scholar
  135. Lyons G, Eisenstein SM, Sweet MB (1981) Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 673:443–453PubMedCrossRefGoogle Scholar
  136. MacGregor AJ, Andrew T, Sambrook PN, Spector TD (2004) Structural, psychological, and genetic influences on low back and neck pain: a study of adult female twins. Arthritis Rheum 51:160–167PubMedCrossRefGoogle Scholar
  137. MacLean JJ, Lee CR, Alini M, Iatridis JC (2004) Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res 22:1193–1200PubMedCrossRefGoogle Scholar
  138. MacLean JJ, Lee CR, Alini M, Iatridis JC (2005) The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc. J Orthop Res 23:1120–1127PubMedCrossRefGoogle Scholar
  139. Malandrino A, Noailly J, Lacroix D (2011) The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes. PLoS Comput Biol 7:e1002112PubMedCrossRefGoogle Scholar
  140. Maniadakis N, Gray A (2000) The economic burden of back pain in the UK. Pain 84:95–103PubMedCrossRefGoogle Scholar
  141. Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15:402–410PubMedCrossRefGoogle Scholar
  142. Maroudas A, Stockwell RA, Nachemson A, Urban J (1975) Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 120:113–130PubMedGoogle Scholar
  143. Martin JA, Brown TD, Heiner AD, Buckwalter JA (2004) Chondrocyte senescence, joint loading and osteoarthritis. Clin Orthop Relat Res (427 Suppl):S96–103Google Scholar
  144. Martin BI, Deyo RA, Mirza SK, Turner JA, Comstock BA, Hollingworth W, Sullivan SD (2008) Expenditures and health status among adults with back and neck problems. JAMA 299:656–664PubMedCrossRefGoogle Scholar
  145. Masuda K, Takegami K, An H, Kumano F, Chiba K, Andersson GB, Schmid T, Thonar E (2003) Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res 21:922–930PubMedCrossRefGoogle Scholar
  146. Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K, Thonar E, Andersson G, An HS (2006) Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine (Phila Pa 1976) 31:742–754CrossRefGoogle Scholar
  147. McCanless JD, Cole JA, Slack SM, Bumgardner JD, Zamora PO, Haggard WO (2011) Modeling nucleus pulposus regeneration in vitro: mesenchymal stem cells, alginate beads, hypoxia, BMP-2, and synthetic peptide B2A. Spine (Phila Pa 1976) 36:2275–2285Google Scholar
  148. Meisel HJ, Ganey T, Hutton WC, Libera J, Minkus Y, Alasevic O (2006) Clinical experience in cell-based therapeutics: intervention and outcome. Eur Spine J 15(Suppl 3):S397–S405PubMedCrossRefGoogle Scholar
  149. Melrose J, Roberts S, Smith S, Menage J, Ghosh P (2002a) Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine (Phila Pa 1976) 27:1278–1285CrossRefGoogle Scholar
  150. Melrose J, Smith S, Little CB, Kitson J, Hwa SY, Ghosh P (2002b) Spatial and temporal localization of transforming growth factor-beta, fibroblast growth factor-2, and osteonectin, and identification of cells expressing alpha-smooth muscle actin in the injured anulus fibrosus: implications for extracellular matrix repair. Spine (Phila Pa 1976) 27:1756–1764CrossRefGoogle Scholar
  151. Melrose J, Smith SM, Appleyard RC, Little CB (2008) Aggrecan, versican and type VI collagen are components of annular translamellar crossbridges in the intervertebral disc. Eur Spine J 17:314–324PubMedCrossRefGoogle Scholar
  152. Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010a) Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 62:3695–3705PubMedCrossRefGoogle Scholar
  153. Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010b) Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther 12:R22PubMedCrossRefGoogle Scholar
  154. Miyamoto K, Masuda K, Kim JG, Inoue N, Akeda K, Andersson GB, An HS (2006) Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs. Spine J 6:692–703PubMedCrossRefGoogle Scholar
  155. Mokhbi SD, Shirazi-Adl A, Urban JP (2009) Investigation of solute concentrations in a 3D model of intervertebral disc. Eur Spine J 18:254–262CrossRefGoogle Scholar
  156. Mwale F, Roughley P, Antoniou J (2004) Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater 8:58–63PubMedGoogle Scholar
  157. Nachemson AL (1981) Disc pressure measurements. Spine (Phila Pa 1976) 6:93–97CrossRefGoogle Scholar
  158. Nachemson A, Lewin T, Maroudas A, Freeman MA (1970) In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 41:589–607PubMedCrossRefGoogle Scholar
  159. Nagase H, Kashiwagi M (2003) Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5:94–103PubMedCrossRefGoogle Scholar
  160. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494PubMedCrossRefGoogle Scholar
  161. Neidlinger-Wilke C, Wurtz K, Urban JP, Borm W, Arand M, Ignatius A, Wilke HJ, Claes LE (2006) Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure. Eur Spine J 15(Suppl 3):S372–S378PubMedCrossRefGoogle Scholar
  162. Nerlich AG, Schleicher ED, Boos N (1997) 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine (Phila Pa 1976) 22:2781–2795CrossRefGoogle Scholar
  163. Nerlich AG, Boos N, Wiest I, Aebi M (1998) Immunolocalization of major interstitial collagen types in human lumbar intervertebral discs of various ages. Virchows Arch 432:67–76PubMedCrossRefGoogle Scholar
  164. Nerlich AG, Weiler C, Zipperer J, Narozny M, Boos N (2002) Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs. Spine (Phila Pa 1976) 27:2484–2490CrossRefGoogle Scholar
  165. Nerlich AG, Schaaf R, Walchli B, Boos N (2007) Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs. Eur Spine J 16:547–555PubMedCrossRefGoogle Scholar
  166. Nomura T, Mochida J, Okuma M, Nishimura K, Sakabe K (2001) Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res 389:94–101Google Scholar
  167. Oegema TR Jr, Johnson SL, Aguiar DJ, Ogilvie JW (2000) Fibronectin and its fragments increase with degeneration in the human intervertebral disc. Spine (Phila Pa 1976) 25:2742–2747CrossRefGoogle Scholar
  168. Ohba T, Haro H, Ando T, Wako M, Suenaga F, Aso Y, Koyama K, Hamada Y, Nakao A (2009) TNF-alpha-induced NF-kappaB signaling reverses age-related declines in VEGF induction and angiogenic activity in intervertebral disc tissues. J Orthop Res 27:229–235PubMedCrossRefGoogle Scholar
  169. Ohshima H, Urban JP (1992) The effect of lactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine (Phila Pa 1976) 17:1079–1082CrossRefGoogle Scholar
  170. Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H (2002) Substance P and calcitonin gene-related peptide immunoreactive sensory DRG neurons innervating the lumbar intervertebral discs in rats. Ann Anat 184:235–240PubMedCrossRefGoogle Scholar
  171. Olmarker K, Larsson K (1998) Tumor necrosis factor alpha and nucleus-pulposus-induced nerve root injury. Spine (Phila Pa 1976) 23:2538–2544CrossRefGoogle Scholar
  172. Olmarker K, Rydevik B (2001) Selective inhibition of tumor necrosis factor-alpha prevents nucleus pulposus-induced thrombus formation, intraneural edema, and reduction of nerve conduction velocity: possible implications for future pharmacologic treatment strategies of sciatica. Spine (Phila Pa 1976) 26:863–869CrossRefGoogle Scholar
  173. Osada R, Ohshima H, Ishihara H, Yudoh K, Sakai K, Matsui H, Tsuji H (1996) Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs. J Orthop Res 14:690–699PubMedCrossRefGoogle Scholar
  174. Park JB, Park IC, Park SJ, Jin HO, Lee JK, Riew KD (2006) Anti-apoptotic effects of caspase inhibitors on rat intervertebral disc cells. J Bone Joint Surg Am 88:771–779PubMedCrossRefGoogle Scholar
  175. Patel KP, Sandy JD, Akeda K, Miyamoto K, Chujo T, An HS, Masuda K (2007) Aggrecanases and aggrecanase-generated fragments in the human intervertebral disc at early and advanced stages of disc degeneration. Spine (Phila Pa 1976) 32:2596–2603CrossRefGoogle Scholar
  176. Pazzaglia UE, Salisbury JR, Byers PD (1989) Development and involution of the notochord in the human spine. J R Soc Med 82:413–415PubMedGoogle Scholar
  177. Pearce RH, Grimmer BJ, Adams ME (1987) Degeneration and the chemical composition of the human lumbar intervertebral disc. J Orthop Res 5:198–205PubMedCrossRefGoogle Scholar
  178. Peng B, Hao J, Hou S, Wu W, Jiang D, Fu X, Yang Y (2006) Possible pathogenesis of painful intervertebral disc degeneration. Spine (Phila Pa 1976) 31:560–566CrossRefGoogle Scholar
  179. Peng B, Chen J, Kuang Z, Li D, Pang X, Zhang X (2009) Expression and role of connective tissue growth factor in painful disc fibrosis and degeneration. Spine (Phila Pa 1976) 34:E178–E182CrossRefGoogle Scholar
  180. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878CrossRefGoogle Scholar
  181. Pluijm SM, van Essen HW, Bravenboer N, Uitterlinden AG, Smit JH, Pols HA, Lips P (2004) Collagen type I alpha1 Sp1 polymorphism, osteoporosis, and intervertebral disc degeneration in older men and women. Ann Rheum Dis 63:71–77PubMedCrossRefGoogle Scholar
  182. Pockert AJ, Richardson SM, Le Maitre CL, Lyon M, Deakin JA, Buttle DJ, Freemont AJ, Hoyland JA (2009) Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum 60:482–491PubMedCrossRefGoogle Scholar
  183. Pokharna HK, Phillips FM (1998) Collagen crosslinks in human lumbar intervertebral disc aging. Spine (Phila Pa 1976) 23:1645–1648CrossRefGoogle Scholar
  184. Pollintine P, Przybyla AS, Dolan P, Adams MA (2004) Neural arch load-bearing in old and degenerated spines. J Biomech 37:197–204PubMedCrossRefGoogle Scholar
  185. Postacchini F, Lami R, Pugliese O (1988) Familial predisposition to discogenic low-back pain. An epidemiologic and immunogenetic study. Spine (Phila Pa 1976) 13:1403–1406CrossRefGoogle Scholar
  186. Purmessur D, Freemont AJ, Hoyland JA (2008) Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc. Arthritis Res Ther 10:R99PubMedCrossRefGoogle Scholar
  187. Rannou F, Lee TS, Zhou RH, Chin J, Lotz JC, Mayoux-Benhamou MA, Barbet JP, Chevrot A, Shyy JY (2004) Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. Am J Pathol 164:915–924PubMedCrossRefGoogle Scholar
  188. Repanti M, Korovessis PG, Stamatakis MV, Spastris P, Kosti P (1998) Evolution of disc degeneration in lumbar spine: a comparative histological study between herniated and postmortem retrieved disc specimens. J Spinal Disord 11:41–45PubMedCrossRefGoogle Scholar
  189. Richardson JK, Chung T, Schultz JS, Hurvitz E (1997) A familial predisposition toward lumbar disc injury. Spine (Phila Pa 1976) 22:1487–1492CrossRefGoogle Scholar
  190. Richardson SM, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, Hoyland JA (2006a) The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials 27:4069–4078PubMedCrossRefGoogle Scholar
  191. Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, Hoyland JA (2006b) Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 24:707–716PubMedCrossRefGoogle Scholar
  192. Richardson SM, Hughes N, Hunt JA, Freemont AJ, Hoyland JA (2008a) Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials 29:85–93PubMedCrossRefGoogle Scholar
  193. Richardson SM, Knowles R, Tyler J, Mobasheri A, Hoyland JA (2008b) Expression of glucose transporters GLUT-1, GLUT-3, GLUT-9 and HIF-1alpha in normal and degenerate human intervertebral disc. Histochem Cell Biol 129:503–511PubMedCrossRefGoogle Scholar
  194. Richardson SM, Doyle P, Minogue BM, Gnanalingham K, Hoyland JA (2009) Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc. Arthritis Res Ther 11:R126PubMedCrossRefGoogle Scholar
  195. Richardson SM, Purmessur D, Baird P, Probyn B, Freemont AJ, Hoyland JA (2012) Degenerate human nucleus pulposus cells promote neurite outgrowth in neural cells. PLoS One 7(10):e47735. PubMed PMID: 23091643Google Scholar
  196. Risbud MV, Fertala J, Vresilovic EJ, Albert TJ, Shapiro IM (2005) Nucleus pulposus cells upregulate PI3K/Akt and MEK/ERK signaling pathways under hypoxic conditions and resist apoptosis induced by serum withdrawal. Spine (Phila Pa 1976) 30:882–889CrossRefGoogle Scholar
  197. Roberts S, Urban JP, Evans H, Eisenstein SM (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine (Phila Pa 1976) 21:415–420CrossRefGoogle Scholar
  198. Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine (Phila Pa 1976) 25:3005–3013CrossRefGoogle Scholar
  199. Roberts S, Evans EH, Kletsas D, Jaffray DC, Eisenstein SM (2006a) Senescence in human intervertebral discs. Eur Spine J 15(Suppl 3):S312–S316PubMedCrossRefGoogle Scholar
  200. Roberts S, Evans H, Trivedi J, Menage J (2006b) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):10–14PubMedCrossRefGoogle Scholar
  201. Rodriguez AG, Slichter CK, Acosta FL, Rodriguez-Soto AE, Burghardt AJ, Majumdar S, Lotz JC (2011) Human disc nucleus properties and vertebral endplate permeability. Spine (Phila Pa 1976) 36:512–520CrossRefGoogle Scholar
  202. Rodriguez AG, Rodriguez-Soto AE, Burghardt AJ, Berven S, Majumdar S, Lotz JC (2012) Morphology of the human vertebral endplate. J Orthop Res 30:280–287PubMedCrossRefGoogle Scholar
  203. Roughley PJ (2004) Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 29:2691–2699PubMedCrossRefGoogle Scholar
  204. Roughley P, Martens D, Rantakokko J, Alini M, Mwale F, Antoniou J (2006) The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur Cell Mater 11:1–7PubMedGoogle Scholar
  205. Rutges JP, Duit RA, Kummer JA, Oner FC, van Rijen MH, Verbout AJ, Castelein RM, Dhert WJ, Creemers LB (2010) Hypertrophic differentiation and calcification during intervertebral disc degeneration. Osteoarthritis Cartilage 18:1487–1495PubMedCrossRefGoogle Scholar
  206. Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, Hotta T (2005) Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine (Phila Pa 1976) 30:2379–2387CrossRefGoogle Scholar
  207. Sakai D, Nakai T, Mochida J, Alini M, Grad S (2009) Differential phenotype of intervertebral disc cells: microarray and immunohistochemical analysis of canine nucleus pulposus and anulus fibrosus. Spine (Phila Pa 1976) 34:1448–1456CrossRefGoogle Scholar
  208. Schollmeier G, Lahr-Eigen R, Lewandrowski KU (2000) Observations on fiber-forming collagens in the anulus fibrosus. Spine (Phila Pa 1976) 25:2736–2741CrossRefGoogle Scholar
  209. Seki S, Kawaguchi Y, Chiba K, Mikami Y, Kizawa H, Oya T, Mio F, Mori M, Miyamoto Y, Masuda I, Tsunoda T, Kamata M, Kubo T, Toyama Y, Kimura T, Nakamura Y, Ikegawa S (2005) A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet 37:607–612PubMedCrossRefGoogle Scholar
  210. Selard E, Shirazi-Adl A, Urban JP (2003) Finite element study of nutrient diffusion in the human intervertebral disc. Spine (Phila Pa 1976) 28:1945–1953CrossRefGoogle Scholar
  211. Shen C, Yan J, Jiang LS, Dai LY (2011) Autophagy in rat annulus fibrosus cells: evidence and possible implications. Arthritis Res Ther 13:R132PubMedCrossRefGoogle Scholar
  212. Sive JI, Baird P, Jeziorsk M, Watkins A, Hoyland JA, Freemont AJ (2002) Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol 55:91–97PubMedCrossRefGoogle Scholar
  213. Smith SM, Whitelock JM, Iozzo RV, Little CB, Melrose J (2009) Topographical variation in the distributions of versican, aggrecan and perlecan in the foetal human spine reflects their diverse functional roles in spinal development. Histochem Cell Biol 132:491–503PubMedCrossRefGoogle Scholar
  214. Solovieva S, Kouhia S, Leino-Arjas P, la-Kokko L, Luoma K, Raininko R, Saarela J, Riihimaki H (2004) Interleukin 1 polymorphisms and intervertebral disc degeneration. Epidemiology 15:626–633PubMedCrossRefGoogle Scholar
  215. Solovieva S, Lohiniva J, Leino-Arjas P, Raininko R, Luoma K, la-Kokko L, Riihimaki H (2006) Intervertebral disc degeneration in relation to the COL9A3 and the IL-1ss gene polymorphisms. Eur Spine J 15:613–619PubMedCrossRefGoogle Scholar
  216. Somerville RP, Longpre JM, Jungers KA, Engle JM, Ross M, Evanko S, Wight TN, Leduc R, Apte SS (2003) Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J Biol Chem 278:9503–9513PubMedCrossRefGoogle Scholar
  217. Sowa GA, Coelho JP, Bell KM, Zorn AS, Vo NV, Smolinski P, Niyonkuru C, Hartman R, Studer RK, Kang JD (2011) Alterations in gene expression in response to compression of nucleus pulposus cells. Spine J 11:36–43PubMedCrossRefGoogle Scholar
  218. Stetler-Stevenson WG, Krutzsch HC, Liotta LA (1989) Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem 264:17374–17378PubMedGoogle Scholar
  219. Stewart WF, Ricci JA, Chee E, Morganstein D, Lipton R (2003) Lost productive time and cost due to common pain conditions in the US workforce. JAMA 290:2443–2454PubMedCrossRefGoogle Scholar
  220. Stoyanov JV, Gantenbein-Ritter B, Bertolo A, Aebli N, Baur M, Alini M, Grad S (2011) Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells. Eur Cell Mater 21:533–547PubMedGoogle Scholar
  221. Studer RK, Vo N, Sowa G, Ondeck C, Kang J (2011) Human nucleus pulposus cells react to IL-6: independent actions and amplification of response to IL-1 and TNF-alpha. Spine (Phila Pa 1976) 36:593–599CrossRefGoogle Scholar
  222. Sztrolovics R, Alini M, Roughley PJ, Mort JS (1997) Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 326(Pt 1):235–241PubMedGoogle Scholar
  223. Sztrolovics R, Grover J, Cs-Szabo G, Shi SL, Zhang Y, Mort JS, Roughley PJ (2002) The characterization of versican and its message in human articular cartilage and intervertebral disc. J Orthop Res 20:257–266PubMedCrossRefGoogle Scholar
  224. Takahashi M, Haro H, Wakabayashi Y, Kawa-uchi T, Komori H, Shinomiya K (2001) The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J Bone Joint Surg Br 83:491–495PubMedCrossRefGoogle Scholar
  225. Takahashi Y, Ohtori S, Takahashi K (2009) Peripheral nerve pathways of afferent fibers innervating the lumbar spine in rats. J Pain 10:416–425PubMedCrossRefGoogle Scholar
  226. Takaishi H, Nemoto O, Shiota M, Kikuchi T, Yamada H, Yamagishi M, Yabe Y (1997) Type-II collagen gene expression is transiently upregulated in experimentally induced degeneration of rabbit intervertebral disc. J Orthop Res 15:528–538PubMedCrossRefGoogle Scholar
  227. Takebayashi T, Cavanaugh JM, Kallakuri S, Chen C, Yamashita T (2006) Sympathetic afferent units from lumbar intervertebral discs. J Bone Joint Surg Br 88:554–557PubMedGoogle Scholar
  228. Takegami K, An HS, Kumano F, Chiba K, Thonar EJ, Singh K, Masuda K (2005) Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J 5:231–238PubMedCrossRefGoogle Scholar
  229. Thompson JP, Pearce RH, Schechter MT, Adams ME, Tsang IK, Bishop PB (1990) Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976) 15:411–415CrossRefGoogle Scholar
  230. Thompson JP, Oegema TR Jr, Bradford DS (1991) Stimulation of mature canine intervertebral disc by growth factors. Spine (Phila Pa 1976) 16:253–260CrossRefGoogle Scholar
  231. Tim YS, Su KK, Li J, Soo PJ, Akamaru T, Elmer WA, Hutton WC (2003) The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro. Spine (Phila Pa 1976) 28:1773–1780CrossRefGoogle Scholar
  232. Tolofari SK, Richardson SM, Freemont AJ, Hoyland JA (2010) Expression of semaphorin 3A and its receptors in the human intervertebral disc: potential role in regulating neural ingrowth in the degenerate intervertebral disc. Arthritis Res Ther 12:R1PubMedCrossRefGoogle Scholar
  233. Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, Rosenfeld SA, Copeland RA, Decicco CP, Wynn R, Rockwell A, Yang F, Duke JL, Solomon K, George H, Bruckner R, Nagase H, Itoh Y, Ellis DM, Ross H, Wiswall BH, Murphy K, Hillman MC Jr, Hollis GF, Newton RC, Magolda RL, Trzaskos JM, Arner EC (1999) Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 284:1664–1666PubMedCrossRefGoogle Scholar
  234. Tschoeke SK, Hellmuth M, Hostmann A, Robinson Y, Ertel W, Oberholzer A, Heyde CE (2008) Apoptosis of human intervertebral discs after trauma compares to degenerated discs involving both receptor-mediated and mitochondrial-dependent pathways. J Orthop Res 26:999–1006PubMedCrossRefGoogle Scholar
  235. Urban JP, Holm S, Maroudas A, Nachemson A (1982) Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res (170):296–302Google Scholar
  236. Urban MR, Fairbank JC, Etherington PJ, Loh FL, Winlove CP, Urban JP (2001) Electrochemical measurement of transport into scoliotic intervertebral discs in vivo using nitrous oxide as a tracer. Spine (Phila Pa 1976) 26:984–990CrossRefGoogle Scholar
  237. Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine (Phila Pa 1976) 29:2700–2709CrossRefGoogle Scholar
  238. van der Roer N, Goossens ME, Evers SM, van Tulder MW (2005) What is the most cost-effective treatment for patients with low back pain? A systematic review. Best Pract Res Clin Rheumatol 19:671–684PubMedCrossRefGoogle Scholar
  239. Videman T, Leppavuori J, Kaprio J, Battie MC, Gibbons LE, Peltonen L, Koskenvuo M (1998) Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine (Phila Pa 1976) 23:2477–2485CrossRefGoogle Scholar
  240. Wagner DR, Reiser KM, Lotz JC (2006) Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions. J Biomech 39:1021–1029PubMedCrossRefGoogle Scholar
  241. Walker BF (2000) The prevalence of low back pain: a systematic review of the literature from 1966 to 1998. J Spinal Disord 13:205–217PubMedCrossRefGoogle Scholar
  242. Wallach D, Arumugam TU, Boldin MP, Cantarella G, Ganesh KA, Goltsev Y, Goncharov TM, Kovalenko AV, Rajput A, Varfolomeev EE, Zhang SQ (2002) How are the regulators regulated? The search for mechanisms that impose specificity on induction of cell death and NF-kappaB activation by members of the TNF/NGF receptor family. Arthritis Res 4(Suppl 3):S189–S196PubMedCrossRefGoogle Scholar
  243. Walsh AJ, Bradford DS, Lotz JC (2004) In vivo growth factor treatment of degenerated intervertebral discs. Spine (Phila Pa 1976) 29:156–163CrossRefGoogle Scholar
  244. Wang DL, Jiang SD, Dai LY (2007) Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine (Phila Pa 1976) 32:2521–2528CrossRefGoogle Scholar
  245. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) 2002 SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320PubMedCrossRefGoogle Scholar
  246. Weiler C, Nerlich AG, Bachmeier BE, Boos N (2005) Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls. Spine (Phila Pa 1976) 30:44–53CrossRefGoogle Scholar
  247. Wilder DG, Pope MH, Magnusson M (1996) Mechanical stress reduction during seated jolt/vibration exposure. Semin Perinatol 20:54–60PubMedCrossRefGoogle Scholar
  248. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 24:755–762CrossRefGoogle Scholar
  249. Wolfe HJ, Putschar WG, Vickery AL (1965) Role of the notochord in human intervetebral disk. I. Fetus and infant. Clin Orthop Relat Res 39:205–212PubMedGoogle Scholar
  250. Wuertz K, Godburn K, MacLean JJ, Barbir A, Donnelly JS, Roughley PJ, Alini M, Iatridis JC (2009) In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression. J Orthop Res 27:1235–1242PubMedCrossRefGoogle Scholar
  251. Yao H, Gu WY (2006) Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis. Biorheology 43:323–335PubMedGoogle Scholar
  252. Yasuma T, Arai K, Yamauchi Y (1993) The histology of lumbar intervertebral disc herniation. The significance of small blood vessels in the extruded tissue. Spine (Phila Pa 1976) 18:1761–1765CrossRefGoogle Scholar
  253. Ye W, Xu K, Huang D, Liang A, Peng Y, Zhu W, Li C (2011) Age-related increases of macroautophagy and chaperone-mediated autophagy in rat nucleus pulposus. Connect Tissue Res 52:472–478PubMedCrossRefGoogle Scholar
  254. Yu H, Zhu Y (2012) Expression of ADAMTS-7 and ADAMTS-12 in nucleus pulposus during degeneration of rat caudal intervetebral disc. J Vet Med Sci 74:9–15PubMedCrossRefGoogle Scholar
  255. Yu J, Winlove PC, Roberts S, Urban JP (2002) Elastic fibre organization in the intervertebral discs of the bovine tail. J Anat 201:465–475PubMedCrossRefGoogle Scholar
  256. Zhao F, Pollintine P, Hole BD, Dolan P, Adams MA (2005) Discogenic origins of spinal instability. Spine (Phila Pa 1976) 30:2621–2630CrossRefGoogle Scholar
  257. Zhao CQ, Liu D, Li H, Jiang LS, Dai LY (2007a) Interleukin-1beta enhances the effect of serum deprivation on rat annular cell apoptosis. Apoptosis 12:2155–2161PubMedCrossRefGoogle Scholar
  258. Zhao CQ, Wang LM, Jiang LS, Dai LY (2007b) The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev 6:247–261PubMedCrossRefGoogle Scholar
  259. Zhao CQ, Zhang YH, Jiang SD, Li H, Jiang LS, Dai LY (2011) ADAMTS-5 and intervertebral disc degeneration: the results of tissue immunohistochemistry and in vitro cell culture. J Orthop Res 29:718–725PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Stephen M. Richardson
    • 1
  • Anthony J. Freemont
    • 1
    • 2
  • Judith A. Hoyland
    • 1
    Email author
  1. 1.Centre for Regenerative Medicine, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesThe University of ManchesterManchesterUK
  2. 2.School of MedicineThe University of ManchesterManchesterUK

Personalised recommendations