Skip to main content

Auxin and the Interaction Between Plants and Microorganisms

  • Chapter
  • First Online:

Abstract

While auxin is involved in virtually every process in plant development and orientation in the environment, plant pathogens have exploited the auxin machinery of the plant to alter plant growth and development in their favor. On the opposite, the plant is able to turn this against invaders and uses the same pathways for defense reactions. Also, plant beneficial microbes can interfere with the auxin metabolism of the host plant to induce growth of the plant for mutual benefits. Here, the role of auxin in disease symptom development will be reviewed, where either the plant or the pathogen contributes to alterations in host auxin synthesis and metabolism. Due to the many interactions known, the focus here will be on bacteria, protists, and fungi. On the one hand, auxin can be rated as pathogenicity factor, but also on the other hand alterations in auxin levels can result in changes of target genes, which then lead to changes in plant defense. In addition, the auxin-signaling pathway is directly utilized in the defense reaction against some pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aldaghi M, Massart S, Bertaccini A, Jijakli MH, Lepoivre P (2009) Identification of host genes potentially implicated in the Malus pumila and ‘Candidatus Phytoplasma mali’ interactions. In: Proceedings of the 21st ICVF conference, Berichte aus dem Julius Kühn-Institut, Neustadt, Germany, pp 43–44

    Google Scholar 

  • Altamura MM (2004) Agrobacterium rhizogenes rolB and rolD genes: regulation and involvement in plant development. Plant Cell Tissue Organ Cult 77:89–101

    CAS  Google Scholar 

  • Ando S, Tsushima S, Tagiri A, Kamachi S, Konagaya K-I, Hagio T, Tabei Y (2006) Increase in BrAO1 gene expression and aldehyde oxidase activity during clubroot development in Chinese cabbage (Brassica rapa L.). Mol. Plant Pathol 7:223–234

    CAS  Google Scholar 

  • Ando S, Tsushima S, Kamachi S, Konagaya K, Tabei Y (2008) Alternative transcription initiation of the nitrilase gene (BrNIT2) caused by infection with Plasmodiophora brassicae Woron. in Chinese cabbage (Brassica rapa L.). Plant Mol Biol 68:557–569

    CAS  PubMed  Google Scholar 

  • Basse CW, Lottspeich F, Steglich W, Kahmann R (1996) Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis. Eur J Biochem 242:648–656

    CAS  PubMed  Google Scholar 

  • Bassi M, Conti GG, Barbieri N (1984) Cell wall degradation by Taphrina deformans in host leaf cells. Mycopathologia 88:115–125

    Google Scholar 

  • Campanella JJ, Smith SM, Leibu D, Wexler S, Ludwig-Müller J (2008) The auxin conjugate hydrolase family of Medicago truncatula and their expression during the interaction with two symbionts. J Plant Growth Regul 27:26–38

    CAS  Google Scholar 

  • Canfield ML, Baca S, Moore LW (1986) Isolation of Pseudomonas syringae from 40 cultivars of diseased woody plants with tip dieback in Pacific Northwest nurseries. Plant Dis 70:647–650

    Google Scholar 

  • Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 104:20131–20136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chou J-C, Huang Y-B (2005) Induction and characterization of an indole-3-acetyl-L-alanine hydrolase from Arthrobacter ilicis. J Plant Growth Regul 24:11–18

    CAS  Google Scholar 

  • Chou J-C, Mulbry WW, Cohen JD (1998) The gene for indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans: molecular cloning, nucleotide sequence, and expression in Escherichia coli. Mol Gen Genet 259:172–178

    CAS  PubMed  Google Scholar 

  • Chung KR, Tzeng DD (2004) Biosynthesis of indole-3-acetic acid by the gall-inducing fungus Ustilago esculenta. J Biol Sci 4:744–750

    CAS  Google Scholar 

  • Chung K-R, Shilts T, Ertürk Ü, Timmer LW, Ueng PP (2003) Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett 226:23–30

    CAS  PubMed  Google Scholar 

  • Ciafardini G (1991) Evaluation of Polymyxa betae Keskin contaminated by Beet Necrotic Yellow Vein Virus in soil. Appl Environ Microbiol 57:1817–1821

    PubMed Central  PubMed  Google Scholar 

  • Clark E, Vigodskyhaas H, Gafni Y (1989) Characteristics in tissue-culture of hyperplasias induced by Erwinia herbicola pathovar gypsophilae. Physiol Mol Plant Pathol 35:383–390

    CAS  Google Scholar 

  • Clark E, Manulis S, Ophir Y, Barash I, Gafni Y (1993) Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytopathology 83:234–240

    CAS  Google Scholar 

  • Cosgrove D (1993) How do plant cell walls extend? Plant Physiol 102:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cosgrove D, Li L, Cho H, Hoffmann-Benning S, Moore R, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444

    CAS  PubMed  Google Scholar 

  • Crespi M, Messens E, Caplan AB, van Montagu M, Desomer J (1992) Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J 11:795–804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Curkovic-Perica M, Lepedus H, Music MS (2007) Effect of indole-3-butyric acid on phytoplasmas in infected Catharanthus roseus shoots grown in vitro. FEMS Microbiol Lett 268:171–177

    PubMed  Google Scholar 

  • Devos S, Prinsen E (2006) Plant hormones: a key in clubroot development. Commun Agric Appl Biol Sci 71((3 Pt B)):869–872

    CAS  PubMed  Google Scholar 

  • Devos S, Vissenberg K, Verbelen J-P, Prinsen E (2005) Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: inpacts on cell wall metabolism and hormone balance. New Phytol 166:241–250

    CAS  PubMed  Google Scholar 

  • Devos S, Laukens K, Deckers P, Van Der Straeten D, Beeckman T, Inze D, van Onckelen H, Witters E, Prinsen E (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol Plant Microbe Interact 19:1431–1433

    CAS  PubMed  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid–amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Domingo C, Andres F, Tharreau D, Iglesias DJ, Talon M (2009) Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol Plant-Microbe Interact 22:201–210

    CAS  PubMed  Google Scholar 

  • Epstein E, Ludwig-Müller J (1993) Indole-3-butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiol Plant 88:382–389

    CAS  Google Scholar 

  • Fallik E, Okon Y, Epstein E, Goldman A, Fischer M (1989) Identification and quantification of IAA and IBA in Azospirillum brasilense-inoculated maize roots. Soil Biol Biochem 21:147–153

    CAS  Google Scholar 

  • Fitze D, Wiepning A, Kaldorf M, Ludwig-Müller J (2005) Auxins in the development of an arbuscular mycorrhizal symbiosis in maize. J Plant Physiol 162:1210–1219

    CAS  PubMed  Google Scholar 

  • Fu J, Wang S (2011) Insights into auxin signaling in plant-pathogen interactions. Front Plant Sci 2:74. doi:10.3389/fpls.2011.00074

    PubMed Central  PubMed  Google Scholar 

  • Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155:589–602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Georgiev MI, Ludwig-Müller J, Bley T (2010) Hairy root culture: copying nature in new bioprocesses. In: Arora R (ed) Medicinal plant biotechnology. CAB International, Oxon, pp 156–175

    Google Scholar 

  • Glawischnig E (2007) Camalexin. Phytochemistry 68:401–406

    CAS  PubMed  Google Scholar 

  • Goethals K, Vereecke D, Jaziri M, Van Montagu M, Holsters M (2001) Leafy gall formation by Rhodococcus fascians. Annu Rev Phytopathol 39:27–52

    CAS  PubMed  Google Scholar 

  • González-Lamothe R, El Oirdi M, Brisson N, Bouarab K (2012) The conjugated auxin indole-3-acetic acid–aspartic acid promotes plant disease development. Plant Cell 24:762–777

    PubMed Central  PubMed  Google Scholar 

  • Gopalan S (2008) Reversal of an immunity associated plant cell death program by the growth regulator auxin. BMC Res Notes 1:126

    PubMed Central  PubMed  Google Scholar 

  • Gravel V, Antoun H, Tweddell R (2007) Effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants. Eur J Plant Pathol 119:457–462

    CAS  Google Scholar 

  • Grsic-Rausch S, Kobelt P, Siemens J, Bischoff M, Ludwig-Müller J (2000) Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis thaliana. Plant Physiol 122:369–378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guevara-Lara F, Valverde ME, Paredes-Lopez O (2000) Is pathogenicity of Ustilago maydis (huitlacoche) strains on maize related to in vitro production of indole-3-acetic acid? World J Microbiol Biotechnol 16:481–490

    CAS  Google Scholar 

  • Hirsch A (1992) Developmental biology of legume nodulation. New Phytol 122:211–237

    Google Scholar 

  • Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci USA 106:6416–6421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huo X, Schnabel E, Hughes K, Frugoli J (2006) RNAi phenotypes and the localization of a protein:GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul 25:156–165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa T, Okazaki K, Kuroda H, Itoh K, Mitsui T, Hori H (2007a) Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development. Mol Plant Pathol 8:623–637

    CAS  PubMed  Google Scholar 

  • Ishikawa T, Kuroda H, Okazaki K, Itoh K, Mitsui T, Hori H (2007b) Evaluation of roles of amidase which converts indole-3-acetamide to indole-3-acetic acid, in formation of clubroot in turnip. Bull Facul Agric Niigata Univ 60:53–60

    CAS  Google Scholar 

  • Jentschel K, Thiel D, Rehn F, Ludwig-Müller J (2007) Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization. Physiol Plant 129:320–333

    CAS  Google Scholar 

  • Kaldorf M, Ludwig-Müller J (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–67

    CAS  Google Scholar 

  • Kazan K, Manners J (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373–382

    CAS  PubMed  Google Scholar 

  • Kefford NP, Brockwell J, Zwar JA (1960) The symbiotic synthesis of auxin by legumes and nodule bacteria and its role in nodule development. Aust J Biol Sci 13:456–467

    CAS  Google Scholar 

  • Komatsu M, Taniguchi M, Matsushita N, Takahashi Y, Hogetsu T (2010) Overwintering of Taphrina wiesneri within cherry shoots monitored with species-specific PCR. J Gen Plant Pathol 76:363–369

    Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    CAS  PubMed  Google Scholar 

  • Laidlaw WMR (1985) A method for the detection of resting sporangia of the potato wart disease (Synchytrium endobioticum) in the soil of old outbreak sites. Potato Res 28:223–232

    Google Scholar 

  • Lee C-W, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Müller J, Hedrich R, Deeken R (2009a) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:2948–2962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK (2009b) Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Biophys Res Commun 379:1038–1042

    CAS  PubMed  Google Scholar 

  • Liu P, Nester EW (2006) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proc Natl Acad Sci USA 103:4658–4662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llorente F, Muskett P, Sanchez-Vallet A, Lopez G, Ramos B, Sanchez-Rodriguez C, Jorda L, Parker J, Molina A (2008) Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol Plant 1:496–509

    CAS  PubMed  Google Scholar 

  • Long SR (2001) Genes and signals in the Rhizobium-legume symbiosis. Plant Physiol 125:69–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219–230

    Google Scholar 

  • Ludwig-Müller J (2009a) Glucosinolates and the clubroot disease: defense compounds or auxin precursors? Phytochem Rev 8:135–148

    Google Scholar 

  • Ludwig-Müller J (2009b) Plant defense – what can we learn from clubroots? Aust Plant Pathol 38:318–324

    Google Scholar 

  • Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    PubMed  Google Scholar 

  • Ludwig-Müller J, Cohen JD (2002) Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiol Plant 115:320–329

    PubMed  Google Scholar 

  • Ludwig-Müller J, Pieper K, Ruppel M, Cohen JD, Epstein E, Kiddle G, Bennett R (1999) Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana L. glucosinolate mutants and the development of the clubroot disease. Planta 208:409–419

    PubMed  Google Scholar 

  • Ludwig-Müller J, Prinsen E, Rolfe S, Scholes J (2009) Metabolism and plant hormone action during the clubroot disease. J Plant Growth Regul 28:229–244

    Google Scholar 

  • Mah KM, Uppalapati SR, Tang Y, Allen S, Shuai B (2012) Gene expression profiling of Macrophomina phaseolina infected Medicago truncatula roots reveals a role for auxin in plant tolerance against the charcoal rot pathogen. Physiol Mol Plant Pathol 79:21–30

    CAS  Google Scholar 

  • Maor R, Haskin S, Levi-Kedmi H, Sharon A (2004) In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 70:1852–1854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matas IM, Perez-Martinez I, Quesada JM, Rodriguez-Herva JJ, Penyalver R, Ramos C (2009) Pseudomonas savastanoi pv. savastanoi contains two iaaL paralogs, one of which exhibits a variable number of a trinucleotide (TAC) tandem repeat. Appl Environ Microbiol 75:1030–1035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mathesius U (2008) Auxin: at the root of nodule development? Funct Plant Biol 35:651–668

    CAS  Google Scholar 

  • Matsuda K, Toyoda H, Yokoyama K, Wakita K, Nishio H, Nishida T et al (1993) Growth inhibition of Pseudomonas solanacearum by substituted 3-indolepropionic acids and related compounds. Biosci Biotechnol Biochem 57:1766–1767

    CAS  Google Scholar 

  • Matsuda K, Toyoda H, Nishio H, Nishida T, Bingo M, Matsuda Y et al (1998) Control of the bacterial wilt of tomato plants by a derivative of 3-indolepropionic acid based on selective actions on Ralstonia solanacearum. J Agric Food Chem 46:4416–4419

    CAS  Google Scholar 

  • Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715

    CAS  PubMed  Google Scholar 

  • Merz U, Falloon RE (2009) Review: powdery scab of potato - increased knowledge of pathogen biology and disease epidemiology for effective disease management. Potato Res 52:17–37

    Google Scholar 

  • Mitchell JE, Angel CR (1951) The growth-stimulating properties of a metabolic product of Fusarium moniliforme. Phytopathology 41:26–27

    Google Scholar 

  • Morris RO (1995) Genes specifying auxin and cytokinin biosynthesis in prokaryotes. In: Davies PJ (ed) Plant hormones. Kluwer Academic, Dordrecht, pp 318–339

    Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    CAS  PubMed  Google Scholar 

  • Nemoto K, Hara M, Goto S, Kasai K, Seki H, Suzuki M, Oka A, Muranaka T, Mano Y (2009) The aux1 gene of the Ri plasmid is sufficient to confer auxin autotrophy in tobacco BY-2 cells. J Plant Physiol 166:729–738

    CAS  PubMed  Google Scholar 

  • Neuhaus K, Grsic-Rausch S, Sauerteig S, Ludwig-Müller J (2000) Arabidopsis plants transformed with nitrilase 1 or 2 in antisense direction are delayed in clubroot development. J Plant Physiol 156:756–761

    CAS  Google Scholar 

  • Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17

    Google Scholar 

  • Ogawa JM, Zehr EI, Bird GW, Ritchie DF, Uriu K, Uyemoto JK (1995) Compendium of stone fruit diseases. APS Press, St. Paul, MN

    Google Scholar 

  • Päsold S, Siegel I, Seidel C, Ludwig-Müller J (2010) Flavonoid accumulation in Arabidopsis thaliana root galls caused by the obligate biotrophic pathogen Plasmodiophora brassicae. Mol Plant Pathol 11:545–562

    PubMed  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pertot I, Musetti R, Pressacco L, Osler R (1998) Changes in Indole-3-acetic acid level in micropropagated tissues of Catharanthus roseus L. infected by the agent of the clover phyllody and effect of exogenous auxins on phytoplasma morphology. Cytobios 95:13–23

    CAS  Google Scholar 

  • Petti C, Reiber K, Ali SS, Berney M, Doohan FM (2012) Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent. BMC Plant Biol 12:224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramos C, Matas IM, Bardaji L, Aragon IM, Murillo J (2012) Pseudomonas savastanoi pv. savastanoi: some like it knot. Mol. Plant Pathol 13:998–1009

    CAS  Google Scholar 

  • Reineke G, Heinze B, Schirawaski J, Buettner H, Kahmann R, Basse CW (2008) Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol 9:339–355

    CAS  PubMed  Google Scholar 

  • Robinette D, Matthysse AG (1990) Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv phaseolicola. J Bacteriol 172:5742–5749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Savić B, Tomić S, Magnus V, Gruden K, Barle K, Grenković R, Ludwig-Müller J, Salopek-Sondi B (2009) Auxin amidohydrolases from Brassica rapa cleave the alanine conjugate of indolepropionic acid as a preferable substrate: a biochemical and modeling approach. Plant Cell Physiol 50:1587–1599

    PubMed  Google Scholar 

  • Schuller A, Ludwig-Müller J (2006) A family of auxin conjugate hydrolases from Brassica rapa: characterization and expression during clubroot disease. New Phytol 171:145–158

    CAS  PubMed  Google Scholar 

  • Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmülling T, Parniske M, Ludwig-Müller J (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant-Microbe Interact 19:480–494

    CAS  PubMed  Google Scholar 

  • Siemens J, Glawischnig E, Ludwig-Müller J (2008) Indole glucosinolates and camalexin do not influence the development of the clubroot disease in Arabidopsis thaliana. J Phytopathol 156:332–337

    CAS  Google Scholar 

  • Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 13:581–589

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    CAS  PubMed  Google Scholar 

  • Spanos YA, Woodward S (1994) The effects of Taphrina betulina infection on growth of Betula pubescens. Eur J Forest Pathol 24:277–286

    Google Scholar 

  • Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stes E, Prinsen E, Holsters M, Vereecke D (2012) Plant-derived auxin plays an accessory role in symptom development upon Rhodococcus fascians infection. Plant J 70:513–527

    CAS  PubMed  Google Scholar 

  • Tabone D (1958) Biosynthèse par B. megatherium de combinaisons de l’acide indol propionique avec certains acides aminés. Bull Soc Chim Biol 40:5–6

    Google Scholar 

  • Tabone J, Tabone D (1953) Bio-esterification du glucose. V. Bio-synthèse par Bacillus megatherium de l’ester β glucosidique de l’acide indolpropionique. C R Hebd Seances Acad Sci 237:943–944

    CAS  PubMed  Google Scholar 

  • Tanaka E, Koga H, Mori M, Mori M (2011) Auxin production by the rice blast fungus and its localization in host tissue. J Phytopathol 159:522–530

    CAS  Google Scholar 

  • Tegg RS, Gill WM, Thompson HK, Davies NW, Ross JJ, WIlson CR (2008) Auxin-induced resistance to common scab disease of potato linked to inhibition of thaxtomin A toxicity. Plant Dis 92:1321–1328

    CAS  Google Scholar 

  • Terrile M, Olivieri F, Bottini R, Casalongue C (2006) Indole-3-acetic acid attenuates the fungal lesions in infected potato tubers. Physiol Plant 127:205–211

    CAS  Google Scholar 

  • Ueno M, Kihara J, Honda Y, Arase S (2004) Indole-related compounds induce the resistance to rice blast fungus, Magnaporthe grisea in barley. J Phytopathol 152:606–612

    CAS  Google Scholar 

  • Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant-Microbe Interact 21:1371–1383

    CAS  PubMed  Google Scholar 

  • Vandenbussche F, Smalle J, Le J, Saibo NJM, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJJ, Harren FJM, Van Onckelen H, Palme K, Verbelen J-P, Van Der Straeten D (2003) The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol 131:1228–1238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vandeputte O, Öden S, Mol A, Vereecke D, Goethals K, El Jaziri M, Prinsen E (2005) Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl Environ Microbiol 71:1169–1177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554

    CAS  PubMed  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler A, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    CAS  PubMed  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada T, Tsukamoto H, Shirashi T, Nomura T, Oku H (1990) Detection of indoleacetic acid biosynthesis in some species of Taphrina causing hyperplastic diseases in plants. Ann Phytopath Soc Jpn 56:532–540

    CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42:1025–1033

    CAS  PubMed  Google Scholar 

  • Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145:450–464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zupan JR, Zambryski P (1995) Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107:1041–1047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Ludwig-Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Ludwig-Müller, J. (2014). Auxin and the Interaction Between Plants and Microorganisms. In: Zažímalová, E., Petrášek, J., Benková, E. (eds) Auxin and Its Role in Plant Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1526-8_18

Download citation

Publish with us

Policies and ethics