Skip to main content

Auxin and Tropisms

  • Chapter
  • First Online:
Auxin and Its Role in Plant Development

Abstract

From the very beginnings, attempts to identify mechanisms underlying polar auxin transport in higher plants have been intimately linked to studies on the regulation of plant tropisms. Already in the nineteenth century Charles Darwin came up with a concept, suggesting that a transmissible signal might be involved in controlling directional plant growth in response to an environmental stimulus. Much later, plant physiologists identified auxin as a candidate molecule that could mediate tropic growth responses. However, it was not until establishment of Arabidopsis genetics and novel molecular techniques at the end of the twentieth century that enabled the characterization of auxin-signaling pathways and resulted in mechanistic insights into control of polar auxin transport and its significance for plant tropisms. In this chapter, essential aspects of the current framework of molecular events are presented, highlighting the role of auxin in directional plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8(3):249–256

    CAS  PubMed  Google Scholar 

  • Arnaud C, Bonnot C, Desnos T, Nussaume L (2010) The root cap at the forefront. C R Biol 333(4):335–343

    CAS  PubMed  Google Scholar 

  • Band LR, Wells DM, Larrieu A, Sun JY, Middleton AM, French AP, Brunoud G, Sato EM, Wilson MH, Peret B, Oliva M, Swarup R, Sairanen I, Parry G, Ljung K, Beeckman T, Garibaldi JM, Estelle M, Owen MR, Vissenberg K, Hodgman TC, Pridmore TP, King JR, Vernoux T, Bennett MJ (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci USA 109(12):4668–4673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbier-Brygoo H, Ephritikhine G, Klambt D, Ghislain M, Guern J (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci USA 86(3):891–895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baskin T (1986) Redistribution of growth during phototropism and nutation in the pea epicotyl. Planta 169:406–414

    CAS  PubMed  Google Scholar 

  • Baster P, Robert S, Kleine-Vehn J, Vanneste S, Kania U, Grunewald W, De Rybel B, Beeckman T, Friml J (2013) SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J 32(2):260–274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Batt S, Venis MA (1976) Separation and localization of two classes of auxin binding sites in corn coleoptile membranes. Planta 130:15–21

    CAS  PubMed  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273(5277):948–950

    CAS  PubMed  Google Scholar 

  • Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, Benfey PN (2005) Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat Methods 2(8):615–619

    CAS  PubMed  Google Scholar 

  • Blancaflor EB, Fasano JM, Gilroy S (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116(1):213–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021):39–44

    CAS  PubMed  Google Scholar 

  • Boonsirichai K, Guan C, Chen R, Masson PH (2002) Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu Rev Plant Biol 53:421–447

    CAS  PubMed  Google Scholar 

  • Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH (2003) ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15(11):2612–2625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boysen Jensen P (1910) Über die Leitung des phototropischen Reizes in Avenakeimpflanzen. Ber Deutsch Bot Ges 28:118–120

    Google Scholar 

  • Boysen Jensen P (1913) Über die Leitung des phototropischen Reizes in der Avenakoleoptile. Ber Deutsch Bot Ges 31:559–566

    Google Scholar 

  • Briggs WR (1963) Mediation of phototropic responses of corn coleoptiles by lateral transport of auxin. Plant Physiol 38:237–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Briggs WR, Tochter RD, Wilson JF (1957) Phototropic auxin redistribution in corn coleoptiles. Science 126:210–212

    CAS  PubMed  Google Scholar 

  • Briggs WR, Beck CF, Cashmore AR, Christie JM, Hughes J, Jarillo JA, Kagawa T, Kanegae H, Liscum E, Nagatani A, Okada K, Salomon M, Rudiger W, Sakai T, Takano M, Wada M, Watson JC (2001) The phototropin family of photoreceptors. Plant Cell 13(5):993–997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caderas D, Muster M, Vogler H, Mandel T, Rose JK, McQueen-Mason S, Kuhlemeier C (2000) Limited correlation between expansin gene expression and elongation growth rate. Plant Physiol 123(4):1399–1414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caspar T, Pickard BG (1989) Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Planta 177:185–197

    Google Scholar 

  • Chae K, Lord EM (2011) Pollen tube growth and guidance: roles of small, secreted proteins. Ann Bot 108(4):627–636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95(25):15112–15117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Y (2007) NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 104(47):18825–18829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Y (2008) NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 105(52):21017–21022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho D, Villiers F, Kroniewicz L, Lee S, Seo YJ, Hirschi KD, Leonhardt N, Kwak JM (2012) Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH. Plant Physiol 160(3):1293–1302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cholodny N (1927) Wuchshormone und Tropismem bei den Pflanzen. Biol Zent Bl 47:604–626

    CAS  Google Scholar 

  • Cholodny N (1928) Beiträge zur hormonalen Theorie von Tropismen. Planta 6:118–134

    Google Scholar 

  • Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E, Briggs WR (1998) Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282(5394):1698–1701

    CAS  PubMed  Google Scholar 

  • Christie JM, Swartz TE, Bogomolni RA, Briggs WR (2002) Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J 32(2):205–219

    CAS  PubMed  Google Scholar 

  • Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS (2011) Phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9(6):e1001076

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861

    CAS  PubMed  Google Scholar 

  • Darwin C, Darwin FE (1881) The power of movement in plants. Appleton, New York

    Google Scholar 

  • Daye S, Biro RL, Roux SJ (1984) Inhibition of gravitropism in oat coleoptiles by the calcium chelator, ethyleneglycol-bis-(beta-aminoethyl ether)-N, N'-tetraacetic acid. Physiol Plant 61(3):449–454

    CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9(1):109–119

    CAS  PubMed  Google Scholar 

  • Ding Z, Galvan-Ampudia CS, Demarsy E, Langowski L, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13(4):447–452

    CAS  PubMed  Google Scholar 

  • Eapen D, Barroso ML, Campos ME, Ponce G, Corkidi G, Dubrovsky JG, Cassab GI (2003) A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol 131(2):536–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Effendi Y, Rietz S, Fischer U, Scherer GF (2011) The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes. Plant J 65(2):282–294

    CAS  PubMed  Google Scholar 

  • Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA 103(1):236–241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ettlinger C, Lehle L (1988) Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331(6152):176–178

    CAS  PubMed  Google Scholar 

  • Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13(4):907–921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Firn RD, Myers AB (1989) Plant movements caused by differential growth–unity or diversity of mechanisms? Environ Exp Bot 29(1):47–55

    CAS  PubMed  Google Scholar 

  • Frank AB (1868) Über die durch Schwerkraft verursachten Bewegungen von Pflanzenteilen. Beitrage zur Pflanzenphysiologie 8:1–99

    Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415(6873):806–809

    PubMed  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306(5697):862–865

    CAS  PubMed  Google Scholar 

  • Furutani M, Kajiwara T, Kato T, Treml BS, Stockum C, Torres-Ruiz RA, Tasaka M (2007) The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level. Development 134(21):3849–3859

    CAS  PubMed  Google Scholar 

  • Furutani M, Sakamoto N, Yoshida S, Kajiwara T, Robert HS, Friml J, Tasaka M (2011) Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers. Development 138(10):2069–2078

    CAS  PubMed  Google Scholar 

  • Galen C, Rabenold JJ, Liscum E (2007) Functional ecology of a blue light photoreceptor: effects of phototropin-1 on root growth enhance drought tolerance in Arabidopsis thaliana. New Phytol 173(1):91–99

    CAS  PubMed  Google Scholar 

  • Galvan-Ampudia CS, Offringa R (2007) Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci 12(12):541–547

    CAS  PubMed  Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282(5397):2226–2230

    PubMed  Google Scholar 

  • Gardner G, Shaw S, Wilkins MB (1974) IAA transport during the phototropic responses of intact Zea and Avena coleoptiles. Planta 28:439–478

    Google Scholar 

  • Gehring CA, Williams DA, Cody SH, Parish RW (1990) Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium. Nature 345:528–530

    CAS  PubMed  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413(6854):425–428

    CAS  PubMed  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112(2):219–230

    CAS  PubMed  Google Scholar 

  • Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jurgens G (2004) Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131(2):389–400

    CAS  PubMed  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414(6861):271–276

    CAS  PubMed  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10(5):453–460

    CAS  PubMed  Google Scholar 

  • Haberlandt G (1900) Über die Perzeption des geotropischen Reizes. Ber Deutsch Bot Ges 18:261–272

    Google Scholar 

  • Haga K, Sakai T (2012) PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced phototropism in Arabidopsis. Plant Physiol 160(2):763–776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haga K, Takano M, Neumann R, Iino M (2005) The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17(1):103–115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hager A, Menzel H, Krauss A (1971) Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta 100:47–75

    CAS  PubMed  Google Scholar 

  • Hager A, Debus G, Edel H-G, Stransky H, Serrano R (1991) Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H+-ATPase. Planta 185:527–537

    CAS  PubMed  Google Scholar 

  • Han IS, Tseng TS, Eisinger W, Briggs WR (2008) Phytochrome A regulates the intracellular distribution of phototropin 1-green fluorescent protein in Arabidopsis thaliana. Plant Cell 20(10):2835–2847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12(5):757–770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison BR, Masson PH (2008) ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53(2):380–392

    CAS  PubMed  Google Scholar 

  • Hasenstein KH, Evans ML (1986) Calcium dependence of rapid auxin action in maize roots. Plant Physiol 81:439–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hasenstein KH, Evans ML (1988) Effects of cations on hormone transport in primary roots of Zea mays. Plant Physiol 86:890–894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hertel R, Thomson K-S, Russo VEA (1972) In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107:325–340

    CAS  PubMed  Google Scholar 

  • Hohm T, Preuten T, Fankhauser C (2013) Phototropism: translating light into directional growth. Am J Bot 100(1):47–59

    CAS  PubMed  Google Scholar 

  • Hou G, Mohamalawari DR, Blancaflor EB (2003) Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton. Plant Physiol 131(3):1360–1373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278(5346):2120–2123

    CAS  PubMed  Google Scholar 

  • Inada S, Ohgishi M, Mayama T, Okada K, Sakai T (2004) RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16(4):887–896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inohara N, Shimomura S, Fukui T, Futai M (1989) Auxin-binding protein located in the endoplasmic reticulum of maize shoots: molecular cloning and complete primary structure. Proc Natl Acad Sci USA 86(10):3564–3568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue S, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K (2008) Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA 105(14):5626–5631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa H, Evans ML (1997) Novel software for analysis of root gravitropism: comparative response patterns of Arabidopsis wild-type and axr1 seedlings. Plant Cell Environ 20(7):919–928

    CAS  PubMed  Google Scholar 

  • Ishikawa H, Hasenstein KH, Evans ML (1991) Computer-based video digitizer analysis of surface extension in maize roots: kinetics of growth rate changes during gravitropism. Planta 183(3):381–390

    CAS  PubMed  Google Scholar 

  • Jaffe MJ, Takahashi H, Biro RL (1985) A pea mutant for the study of hydrotropism in roots. Science 230:445–447

    CAS  PubMed  Google Scholar 

  • Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR, Cashmore AR (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410(6831):952–954

    CAS  PubMed  Google Scholar 

  • Johnson H (1829) The unsatisfactory nature of the theories proposed to account for the descent of the radicles in the germination of seeds, shown by experiments. Edinburgh New Pil J 312–317

    Google Scholar 

  • Juniper B, Groves S, Landau-Schchar B, Audus L (1966) Root cap and the perception of gravity. Nature 209:93–94

    Google Scholar 

  • Kami C, Hersch M, Trevisan M, Genoud T, Hiltbrunner A, Bergmann S, Fankhauser C (2012) Nuclear phytochrome A signaling promotes phototropism in Arabidopsis. Plant Cell 24(2):566–576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneyasu T, Kobayashi A, Nakayama M, Fujii N, Takahashi H, Miyazawa Y (2007) Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J Exp Bot 58:1143–1150

    CAS  PubMed  Google Scholar 

  • Kang BG, Burg SP (1974) Red Light enhancement of the phototropic response in pea stems. Plant Physiol 53:445–448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufman PB, Wu L-L, Brock TG, Kim D (1988) Hormones and the orientation of growth. In: Davies PJ (ed) Plant hormones physiology, biochemistry and molecular biology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Khurana JP, Poff KL (1989) Mutants of Arabidopsis thaliana with altered phototropism. Planta 178:400–406

    Google Scholar 

  • Kiss JZ, Guisinger MM, Miller AJ, Stackhouse KS (1997) Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis. Plant Cell Physiol 38(5):518–525

    CAS  PubMed  Google Scholar 

  • Kiss JZ, Mullen JL, Correll MJ, Hangarter RP (2003) Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol 131(3):1411–1417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J (2008) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci USA 105(46):17812–17817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci USA 107(51):22344–22349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA 104(11):4724–4729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kögl F, Haagen-Smits AJ (1931) Über die Chemie des Wuchsstoffs. Proc Koninklijke Nederlandse Akademie Wetenschappen 34:1411–1416

    Google Scholar 

  • Kögl F, Schuringa GJ (1944) Über die Inaktivierung von Auxin-a-lacton bei verschiedenen Wellenlängen und den Einfluß von Carotinoiden auf die Lichtreaktion. Hoppe Seylers Z Physiol Chem 280:148–161

    Google Scholar 

  • Konings H (1968) The significance of the root cap for geotropism. Acta Bot Neerl 17:203–211

    Google Scholar 

  • Kutschera U, Briggs WR (2012) Root phototropism: from dogma to the mechanism of blue light perception. Planta 235(3):443–452

    CAS  PubMed  Google Scholar 

  • Lariguet P, Fankhauser C (2004) Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J 40(5):826–834

    CAS  PubMed  Google Scholar 

  • Lee JS, Mulkey TJ, Evans ML (1984) Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors. Planta 160:536–543

    CAS  Google Scholar 

  • Leitner J, Petrasek J, Tomanov K, Retzer K, Parezova M, Korbei B, Bachmair A, Zazimalova E, Luschnig C (2012) Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc Natl Acad Sci USA 109(21):8322–8327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Dai X, Cheng Y, Zhao Y (2011) NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol Plant 4(1):171–179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2(11):1071–1080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liscum E, Briggs WR (1995) Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7(4):473–485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49(3–4):387–400

    CAS  PubMed  Google Scholar 

  • Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12(14):2175–2187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mertens R, Weiler EW (1983) Kinetic studies on the redistribution of endogenous growth regulators in gravireacting plant organs. Planta 158:339–348

    CAS  PubMed  Google Scholar 

  • Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130(6):1044–1056

    CAS  PubMed  Google Scholar 

  • Migliaccio F, Fortunati A, Tassone P (2009) Arabidopsis root growth movements and their symmetry: progress and problems arising from recent work. Plant Signal Behav 4(3):183–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyazawa Y, Sakashita T, Funayama T, Hamada N, Negishi H, Kobayashi A, Kaneyasu T, Ooba A, Morohashi K, Kakizaki T, Wada S, Kobayashi Y, Fujii N, Takahashi H (2008) Effects of locally targeted heavy-ion and laser microbeam on root hydrotropism in Arabidopsis thaliana. J Radiat Res 49(4):373–379

    PubMed  Google Scholar 

  • Miyazawa Y, Takahashi A, Kobayashi A, Kaneyasu T, Fujii N, Takahashi H (2009) GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Arabidopsis roots. Plant Physiol 149(2):835–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno H, Kobayashi A, Fujii N, Yamashita M, Takahashi H (2002) Hydrotropic response and expression pattern of auxin-inducible gene, CS-IAA1, in the primary roots of clinorotated cucumber seedlings. Plant Cell Physiol 43(7):793–801

    CAS  PubMed  Google Scholar 

  • Möller B, Schenck D, Luthen H (2010) Exploring the link between auxin receptors, rapid cell elongation and organ tropisms. Plant Signal Behav 5(5)

    Google Scholar 

  • Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720

    CAS  PubMed  Google Scholar 

  • Moriwaki T, Miyazawa Y, Kobayashi A, Uchida M, Watanabe C, Fujii N, Takahashi H (2011) Hormonal regulation of lateral root development in Arabidopsis modulated by MIZ1 and requirement of GNOM activity for MIZ1 function. Plant Physiol 157(3):1209–1220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moriwaki T, Miyazawa Y, Kobayashi A, Takahashi H (2013) Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). Am J Bot 100(1):25–34

    CAS  PubMed  Google Scholar 

  • Motchoulski A, Liscum E (1999) Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286(5441):961–964

    CAS  PubMed  Google Scholar 

  • Mullen JL, Ishikawa H, Evans ML (1998) Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation. Planta 206(4):598–603

    CAS  PubMed  Google Scholar 

  • Müller A, Guan C, Gälweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17(23):6903–6911

    PubMed Central  PubMed  Google Scholar 

  • Nagashima A, Uehara Y, Sakai T (2008) The ABC subfamily B auxin transporter AtABCB19 is involved in the inhibitory effects of N-1-naphthyphthalamic acid on the phototropic and gravitropic responses of Arabidopsis hypocotyls. Plant Cell Physiol 49(8):1250–1255

    CAS  PubMed  Google Scholar 

  • Nakamura M, Toyota M, Tasaka M, Morita MT (2011) An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing. Plant Cell 23(5):1830–1848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson AJ, Evans ML (1986) Analysis of growth patterns during gravitropic curvature in roots of Zea mays by use of a computer-based video digitizer. J Plant Growth Regul 5:73–83

    CAS  PubMed  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13(11):2441–2454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okada K, Shimura Y (1992) Mutational analysis of root gravitropism and phototropism of Arabidopsis thaliana seedlings. Aust J Plant Physiol 19:439–448

    Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant cell 3(7):677–684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17(2):444–463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100(5):2987–2991

    CAS  PubMed Central  PubMed  Google Scholar 

  • Overbeek JV (1932) An analysis of phototropism in dicotyledons. Proc Koninklijke Nederlandse Akademie Wetenschappen 35:1325–1335

    Google Scholar 

  • Paciorek T, Zažímalová E, Ruthardt N, Petrášek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jurgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435(7046):1251–1256

    CAS  PubMed  Google Scholar 

  • Perbal G, Driss-Ecole D (2003) Mechanotransduction in gravisensing cells. Trends Plant Sci 8(10):498–504

    CAS  PubMed  Google Scholar 

  • Perera IY, Hung CY, Brady S, Muday GK, Boss WF (2006) A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol 140(2):746–760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubeš M, Čovanová M, Dhonukshe P, Skůpa P, Benková E, Perry L, Křeček P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zažímalová E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312(5775):914–918

    PubMed  Google Scholar 

  • Pickard BG, Thimann KV (1964) Transport and distribution of auxin during tropistic response. II. The lateral migration of auxin in phototropism of coleoptiles. Plant Physiol 39:341–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pickett FB, Wilson AK, Estelle M (1990) The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol 94(3):1462–1466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pilet P-E, Ney D (1981) Differential growth of georeacting maize roots. Planta 151:146–150

    CAS  PubMed  Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 129(2):786–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rakusova H, Gallego-Bartolome J, Vanstraelen M, Robert HS, Alabadi D, Blazquez MA, Benkova E, Friml J (2011) Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J 67(5):817–826

    CAS  PubMed  Google Scholar 

  • Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of arabidopsis. Plant Physiol 122(2):481–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rayle DL, Cleland RE (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Covanova M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zazimalova E, Friml J (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143(1):111–121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts D, Pedmale UV, Morrow J, Sachdev S, Lechner E, Tang X, Zheng N, Hannink M, Genschik P, Liscum E (2011) Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-Ring E3 ubiquitin ligase CRL3(NPH3). Plant Cell 23(10):3627–3640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosquete MR, von Wangenheim D, Marhavy P, Barbez E, Stelzer EH, Benkova E, Maizel A, Kleine-Vehn J (2013) An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr Biol 23(9):817–822

    CAS  PubMed  Google Scholar 

  • Rück A, Palme K, Venis MA, Napier RM, Felle HH (1993) Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts. Plant J 4:41–46

    Google Scholar 

  • Sachs J (1868) Lehrbuch der Botanik. Engelmann, Leipzig

    Google Scholar 

  • Sachs J (1872) Ablenkung der Wurzel von ihrer normalen Wachstumsrichtung durch feuchte Köper. Arb D Bot Inst Würzburg 1:209–222

    Google Scholar 

  • Sachs J (1879) Über Ausschließung der geotropischen und heliotropischen Krümmungen während des Wachsthums. Würzburger Arbeiten 2:209–225

    Google Scholar 

  • Sachs J (1882) Vorlesungen über Pflanzen-Physiologie. Engelmann, Leipzig

    Google Scholar 

  • Sachs J (1892) Gesammelte Abhandlungen über Pflanzen-Physiologie, vol Erster Band. Wilhem Engelmann, Leipzig

    Google Scholar 

  • Sack FD (1991) Plant gravity sensing. Int Rev Cytol 127:193–252

    CAS  PubMed  Google Scholar 

  • Sakai T (2005) NPH3 and RPT2: signal transducers in phototropin signaling pathways. In: Wada M, Shimazaki K, Iino M (eds) Light sensing in plants. Springer, Tokyo

    Google Scholar 

  • Sakai T, Haga K (2012) Molecular genetic analysis of phototropism in Arabidopsis. Plant Cell Physiol 53(9):1517–1534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2. A signal transducer of the phototropic response in Arabidopsis. Plant Cell 12(2):225–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98(12):6969–6974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14(8):1723–1735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39(31):9401–9410

    CAS  PubMed  Google Scholar 

  • Sharrock R (1672) The history of the propagation and improvement of vegetables. W. Hall, Oxford

    Google Scholar 

  • Shen-Miller J, Cooper P, Gordon SA (1969) Phototropism and photoinhibiiton of basipolar transport of auxin in oat coleoptiles. Plant Physiol 44:491–496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sieberer T, Seifert GJ, Hauser MT, Grisafi P, Fink GR, Luschnig C (2000) Post-transcriptional control of the Arabidopsis auxin efflux carrier EIR1 requires AXR1. Curr Biol 10(24):1595–1598

    CAS  PubMed  Google Scholar 

  • Sievers A, Behrens HM, Buckhout TJ, Gradmann D (1984) Can a Ca2+ pump in the endoplasmic reticulum of the Lepidium root be the trigger for rapid changes in membrane potential after gravistimulation? J Plant Physiol 114(3):195–200

    CAS  PubMed  Google Scholar 

  • Sievers A, Kruse S, Kuo-Huang LL, Wendt M (1989) Statoliths and microfilaments in plant cells. Planta 179(2):275–278

    CAS  PubMed  Google Scholar 

  • Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E (2008) Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant 1(1):129–144

    CAS  PubMed  Google Scholar 

  • Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, Haseloff J, Beemster GT, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7(11):1057–1065

    CAS  PubMed  Google Scholar 

  • Takahashi N, Goto N, Okada K, Takahashi H (2002) Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216(2):203–211

    CAS  PubMed  Google Scholar 

  • Takahashi N, Yamazaki Y, Kobayashi A, Higashitani A, Takahashi H (2003) Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol 132(2):805–810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi H, Miyazawa Y, Fujii N (2009) Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. Plant Mol Biol 69(4):489–502

    CAS  PubMed  Google Scholar 

  • Takahashi K, Hayashi K, Kinoshita T (2012) Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 159(2):632–641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takano M, Takahashi H, Suge H (1997) Calcium requirement for the induction of hydrotropism and enhancement of calcium-induced curvature by water stress in primary roots of pea, Pisum sativum L. Plant Cell Physiol 38:385–391

    CAS  Google Scholar 

  • Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16(2):379–393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17(11):2922–2939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tillmann U, Viola G, Kayser B, Siemeister G, Hesse T, Palme K, Lobler M, Klambt D (1989) cDNA clones of the auxin-binding protein from corn coleoptiles (Zea mays L.): isolation and characterization by immunological methods. EMBO J 8(9):2463–2467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timpte C, Lincoln C, Pickett FB, Turner J, Estelle M (1995) The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant J 8(4):561–569

    CAS  PubMed  Google Scholar 

  • Treml BS, Winderl S, Radykewicz R, Herz M, Schweizer G, Hutzler P, Glawischnig E, Ruiz RA (2005) The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 132(18):4063–4074

    CAS  PubMed  Google Scholar 

  • Tsugeki R, Fedoroff NV (1999) Genetic ablation of root cap cells in Arabidopsis. Proc Natl Acad Sci USA 96(22):12941–12946

    CAS  PubMed Central  PubMed  Google Scholar 

  • Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) Agr, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol 39(10):1111–1118

    CAS  PubMed  Google Scholar 

  • Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132(20):4521–4531

    CAS  PubMed  Google Scholar 

  • Wan Y, Jasik J, Wang L, Hao H, Volkmann D, Menzel D, Mancuso S, Baluska F, Lin J (2012) The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell 24(2):551–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17(8):2204–2216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jurgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24(10):1874–1885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Went FW (1926) On growth accelerating substances in the coleoptile of Avena sativa. Proc Koninklijke Nederlandse Akademie Wetenschappen 30:10–19

    Google Scholar 

  • Went FW (1928) Wuchsstoff und Wachstum. Receuil des Travaux Botaniques Neerlandais 25:1–116

    Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York

    Google Scholar 

  • Whippo CW, Hangarter RP (2006) Phototropism: bending towards enlightenment. Plant Cell 18(5):1110–1119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiesner J (1884) Untersuchungen über die Wachstumsbewegungen der Wurzeln. Sitzungsber Akad Wiss Wien Math-Naturwiss Kl I 89:223–302

    Google Scholar 

  • Wu G, Cameron JN, Ljung K, Spalding EP (2010) A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B. Plant J 62(2):179–191

    CAS  PubMed  Google Scholar 

  • Yan DW, Wang J, Yuan TT, Hong LW, Gao X, Lu YT (2013) Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots. PLoS One 8(3):e58103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Murphy AS (2009) Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J 59(1):179–191

    CAS  PubMed  Google Scholar 

  • Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16(11):1123–1127

    CAS  PubMed  Google Scholar 

  • Young LM, Evans ML, Hertel R (1990) Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays. Plant Physiol 92:792–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Vanneste S, Brewer PB, Michniewicz M, Grones P, Kleine-Vehn J, Lofke C, Teichmann T, Bielach A, Cannoot B, Hoyerova K, Chen X, Xue HW, Benkova E, Zazimalova E, Friml J (2011) Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity. Dev Cell 20(6):855–866

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Luschnig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Retzer, K., Korbei, B., Luschnig, C. (2014). Auxin and Tropisms. In: Zažímalová, E., Petrášek, J., Benková, E. (eds) Auxin and Its Role in Plant Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1526-8_16

Download citation

Publish with us

Policies and ethics