Skip to main content

Auxin, Chief Architect of the Shoot Apex

  • Chapter
  • First Online:
Auxin and Its Role in Plant Development

Abstract

Plants have a unique capacity for continuous postembryonic development linked to the existence of permanent stem cell niches, located in specialized tissues called meristems. The activity of the shoot apical meristem (SAM), which is located at the tip of stems and branches, allows for the continuous production of all aerial organs that will develop as lateral shoots, leaves, or flowers. As it defines the number, type, and position of lateral primordia, the SAM is at the basis of plant architecture and its activity can be modulated by both internal and environmental cues. Successive initiations of new organ primordia occur in the meristem following very precise spatiotemporal patterns, called phyllotaxis. The maintenance of the meristem over time is thus expected to require precise spatiotemporal control of cell fate to allow for the continuous emergence of new primordia at precise positions and the maintenance of the stem cell niche. Signaling initiated by the plant hormone auxin plays a central role in the control of cell identities during organogenesis and in the dynamics of phyllotaxis. We first describe the structure and function of the SAM, focusing on the model species Arabidopsis thaliana. We then discuss the central role played by auxin in the coordination of cellular behaviors and cell identities in the SAM, and thus in providing the primary instructions for phyllotaxis and for elaborating the shoot architecture. Finally, we illustrate how the gene network downstream of auxin and mechanical properties of tissues participate in controlling morphogenesis and phyllotaxis dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aichinger E, Kornet N, Friedrich T, Laux T (2012) Plant stem cell niches. Annu Rev Plant Biol 63(63):615–636

    CAS  PubMed  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9(6):841–857. doi:10.1105/tpc.9.6.841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bainbridge K, Guyomarc'h S, Bayer E, Swarup R, Bennett M, Mandel T, Kuhlemeier C (2008) Auxin influx carriers stabilize phyllotactic patterning. Genes Dev 22(6):810–823. doi:10.1101/gad.462608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barton MK (2010) Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol 341(1):95–113. doi:10.1016/j.ydbio.2009.11.029

    CAS  PubMed  Google Scholar 

  • Bayer EM, Smith RS, Mandel T, Nakayama N, Sauer M, Prusinkiewicz P, Kuhlemeier C (2009) Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 23(3):373–384. doi:10.1101/gad.497009, 23/3/373 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128(20):4057–4067

    CAS  PubMed  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115(5):591–602

    CAS  PubMed  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273(5277):948–950

    CAS  PubMed  Google Scholar 

  • Borghi L, Bureau M, Simon R (2007) Arabidopsis JAGGED LATERAL ORGANS is expressed in boundaries and coordinates KNOX and PIN activity. Plant Cell 19(6):1795–1808. doi:10.1105/tpc.106.047159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5(3):110–115

    CAS  PubMed  Google Scholar 

  • Bowman JL, Floyd SK (2008) Patterning and polarity in seed plant shoots. Annu Rev Plant Biol 59:67–88. doi:10.1146/annurev.arplant.57.032905.105356

    CAS  PubMed  Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289(5479):617–619

    CAS  PubMed  Google Scholar 

  • Brand U, Grunewald M, Hobe M, Simon R (2002) Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol 129(2):565–575. doi:10.1104/pp. 001867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brandt R, Salla-Martret M, Bou-Torrent J, Musielak T, Stahl M, Lanz C, Ott F, Schmid M, Greb T, Schwarz M, Choi SB, Barton MK, Reinhart BJ, Liu T, Quint M, Palauqui JC, Martinez-Garcia JF, Wenkel S (2012) Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. Plant J 72(1):31–42. doi:10.1111/j.1365-313X.2012.05049.x

    CAS  PubMed  Google Scholar 

  • Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482(7383):103–106. doi:10.1038/nature10791

    CAS  PubMed  Google Scholar 

  • Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408(6815):967–971. doi:10.1038/35050091

    CAS  PubMed  Google Scholar 

  • Chandler JW (2012) Floral meristem initiation and emergence in plants. Cell Mol Life Sci 69(22):3807–3818. doi:10.1007/s00018-012-0999-0

    CAS  PubMed  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285. doi:10.1146/annurev-genet-102108-134148

    CAS  PubMed  Google Scholar 

  • Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60(1):43–56. doi:10.1093/jxb/ern315

    CAS  PubMed  Google Scholar 

  • Chen X, Naramoto S, Robert S, Tejos R, Lofke C, Lin D, Yang Z, Friml J (2012) ABP1 and ROP6 GTPase signaling regulate clathrin-mediated endocytosis in Arabidopsis roots. Curr Biol 22(14):1326–1332. doi:10.1016/j.cub.2012.05.020

    CAS  PubMed  Google Scholar 

  • Cheng YF, Dai XH, Zhao YD (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20(13):1790–1799. doi:10.1101/Gad.1415106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19(8):2430–2439. doi:10.1105/tpc.107.053009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christensen SK, Dagenais N, Chory J, Weigel D (2000) Regulation of auxin response by the protein kinase PINOID. Cell 100(4):469–478

    CAS  PubMed  Google Scholar 

  • Cosgrove D (1986) Biophysical control of plant cell growth. Annu Rev Plant Physiol 37:377–405. doi:10.1146/annurev.pp. 37.060186.002113

    CAS  PubMed  Google Scholar 

  • D’Arcy Thompson W (1917) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • de Reuille PB, Bohn-Courseau I, Ljung K, Morin H, Carraro N, Godin C, Traas J (2006) Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci U S A 103(5):1627–1632. doi:10.1073/pnas.0510130103, 0510130103 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Ditengou FA, Teale WD, Kochersperger P, Flittner KA, Kneuper I, van der Graaff E, Nziengui H, Pinosa F, Li X, Nitschke R, Laux T, Palme K (2008) Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105(48):18818–18823. doi:10.1073/pnas.0807814105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Douady S, Couder Y (1992) Phyllotaxis as a physical self-organized growth-process. Phys Rev Lett 68(13):2098–2101. doi:10.1103/PhysRevLett.68.2098

    PubMed  Google Scholar 

  • Douady S, Couder Y (1996a) Phyllotaxis as a dynamical self organizing process.1. The spiral modes resulting from time-periodic iterations. J Theor Biol 178(3):255–274. doi:10.1006/jtbi.1996.0024

    Google Scholar 

  • Douady S, Couder Y (1996b) Phyllotaxis as a dynamical self organizing process. 2. The spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns. J Theor Biol 178(3):275–294. doi:10.1006/jtbi.1996.0025

    Google Scholar 

  • Douady S, Couder Y (1996c) Phyllotaxis as a dynamical self organizing process. 3. The simulation of the transient regimes of ontogeny. J Theor Biol 178(3):295–312. doi:10.1006/jtbi.1996.0026

    Google Scholar 

  • Dumais J, Steele CR (2000) New evidence for the role of mechanical forces in the shoot apical meristem. J Plant Growth Regul 19(1):7–18

    CAS  PubMed  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10(6):967–979

    CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044

    CAS  PubMed  Google Scholar 

  • Farge E (2003) Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol 13(16):1365–1377

    CAS  PubMed  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283(5409):1911–1914

    CAS  PubMed  Google Scholar 

  • Friml J (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol 89(2–3):231–235. doi:10.1016/j.ejcb.2009.11.003

    CAS  PubMed  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306(5697):862–865. doi:10.1126/science.1100618

    CAS  PubMed  Google Scholar 

  • Gallois JL, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129(13):3207–3217

    CAS  PubMed  Google Scholar 

  • Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282(5397):2226–2230

    CAS  PubMed  Google Scholar 

  • Green PB (1999) Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am J Bot 86(8):1059–1076

    CAS  PubMed  Google Scholar 

  • Guenot B, Bayer E, Kierzkowski D, Smith RS, Mandel T, Zadnikova P, Benkova E, Kuhlemeier C (2012) Pin1-independent leaf initiation in Arabidopsis. Plant Physiol 159(4):1501–1510. doi:10.1104/pp. 112.200402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322(5908):1650–1655. doi:10.1126/science.1165594, 322/5908/1650 [pii]

    CAS  PubMed  Google Scholar 

  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15(21):1899–1911. doi:10.1016/j.cub.2005.09.052, S0960-9822(05)01213-3 [pii]

    CAS  PubMed  Google Scholar 

  • Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jonsson H, Traas J, Meyerowitz EM (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 8(10):e1000516. doi:10.1371/journal.pbio.1000516

    PubMed Central  PubMed  Google Scholar 

  • Hernandez LF, Green PB (1993) Transductions for the expression of structural pattern: analysis in sunflower. Plant Cell 5(12):1725–1738. doi:10.1105/tpc.5.12.1725

    PubMed Central  PubMed  Google Scholar 

  • Hofmeister W (1868) Allgemeine Morphologie des Gewächse. Handbuch des physiologischeb Botanik, vol 1. Engelmann, Leipzig

    Google Scholar 

  • Husbands A, Bell EM, Shuai B, Smith HM, Springer PS (2007) LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Res 35(19):6663–6671. doi:10.1093/nar/gkm775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jonsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103(5):1633–1638. doi:10.1073/pnas.0509839103, 0509839103 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Kierzkowski D, Nakayama N, Routier-Kierzkowska AL, Weber A, Bayer E, Schorderet M, Reinhardt D, Kuhlemeier C, Smith RS (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335(6072):1096–1099. doi:10.1126/science.1213100

    CAS  PubMed  Google Scholar 

  • Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313(5788):845–848. doi:10.1126/science.1128439

    CAS  PubMed  Google Scholar 

  • Krizek B (2009) AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiol 150(4):1916–1929. doi:10.1104/pp.109.141119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164(11):1395–1409. doi:10.1016/j.jplph.2007.08.002

    CAS  PubMed  Google Scholar 

  • Lenhard M, Jurgens G, Laux T (2002) The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129(13):3195–3206

    CAS  PubMed  Google Scholar 

  • Li W, Zhou Y, Liu X, Yu P, Cohen JD, Meyerowitz EM (2013) LEAFY Controls Auxin Response Pathways in Floral Primordium Formation. Sci Signal 6(270):ra23. doi:10.1126/scisignal.2003937

    PubMed  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28(4):465–474

    CAS  PubMed  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379(6560):66–69. doi:10.1038/379066a0

    CAS  PubMed  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao YD, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108(45):18512–18517. doi:10.1073/pnas.1108434108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805–815

    CAS  PubMed  Google Scholar 

  • Mitchison GJ (1980) A model for vein formation in higher plants. Proc R Soc Lond Biol Sci 207:79–109

    Google Scholar 

  • Mitchison GJ (1981) The polar transport of auxin and vein patterns in plants. Philos Trans R Soc B 295

    Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97(2):942–947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moyroud E, Minguet EG, Ott F, Yant L, Pose D, Monniaux M, Blanchet S, Bastien O, Thevenon E, Weigel D, Schmid M, Parcy F (2011) Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Plant Cell 23(4):1293–1306. doi:10.1105/tpc.111.083329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z (2012) ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 10(4):e1001299. doi:10.1371/journal.pbio.1001299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama N, Smith RS, Mandel T, Robinson S, Kimura S, Boudaoud A, Kuhlemeier C (2012) Mechanical regulation of auxin-mediated growth. Curr Biol 22(16):1468–1476. doi:10.1016/j.cub.2012.06.050

    CAS  PubMed  Google Scholar 

  • Nimchuk ZL, Tarr PT, Ohno C, Qu X, Meyerowitz EM (2011) Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase. Curr Biol 21(5):345–352. doi:10.1016/j.cub.2011.01.039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319(5861):294. doi:10.1126/science.1150083

    CAS  PubMed  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3(7):677–684. doi:10.1105/tpc.3.7.677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jurgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435(7046):1251–1256. doi:10.1038/nature03633

    CAS  PubMed  Google Scholar 

  • Parcy F, Nilsson O, Busch MA, Lee I, Weigel D (1998) A genetic framework for floral patterning. Nature 395(6702):561–566. doi:10.1038/26903

    CAS  PubMed  Google Scholar 

  • Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Hofte H (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21(20):1720–1726. doi:10.1016/j.cub.2011.08.057

    CAS  PubMed  Google Scholar 

  • Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16(7):1898–1911. doi:10.1105/tpc.021501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peret B, Swarup K, Ferguson A, Seth M, Yang Y, Dhondt S, James N, Casimiro I, Perry P, Syed A, Yang H, Reemmer J, Venison E, Howells C, Perez-Amador MA, Yun J, Alonso J, Beemster GT, Laplaze L, Murphy A, Bennett MJ, Nielsen E, Swarup R (2012) AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell 24(7):2874–2885. doi:10.1105/tpc.112.097766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312(5775):914–918. doi:10.1126/science.1123542

    CAS  PubMed  Google Scholar 

  • Phelps-Durr TL, Thomas J, Vahab P, Timmermans MC (2005) Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell 17(11):2886–2898. doi:10.1105/tpc.105.035477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98(20):11812–11817. doi:10.1073/pnas.191380498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinon V, Prasad K, Grigg SP, Sanchez-Perez GF, Scheres B (2013) Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. Proc Natl Acad Sci USA 110(3):1107–1112. doi:10.1073/pnas.1213497110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prasad K, Grigg SP, Barkoulas M, Yadav RK, Sanchez-Perez GF, Pinon V, Blilou I, Hofhuis H, Dhonukshe P, Galinha C, Mahonen AP, Muller WH, Raman S, Verkleij AJ, Snel B, Reddy GV, Tsiantis M, Scheres B (2011) Arabidopsis PLETHORA transcription factors control phyllotaxis. Curr Biol 21(13):1123–1128. doi:10.1016/j.cub.2011.05.009

    CAS  PubMed  Google Scholar 

  • Proseus TE, Ortega JK, Boyer JS (1999) Separating growth from elastic deformation during cell enlargement. Plant Physiol 119(2):775–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rast MI, Simon R (2012) Arabidopsis JAGGED LATERAL ORGANS acts with ASYMMETRIC LEAVES2 to coordinate KNOX and PIN expression in shoot and root meristems. Plant Cell 24(7):2917–2933. doi:10.1105/tpc.112.099978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raven JA (1975) Transport of indoleacetic-acid in plant-cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74(2):163–172. doi:10.1111/j.1469-8137.1975.tb02602.x

    CAS  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12(4):507–518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426(6964):255–260. doi:10.1038/nature02081, nature02081 [pii]

    CAS  PubMed  Google Scholar 

  • Richards FJ (1948) The geometry of phyllotaxis and its origin. Symp Soc Exp Biol 2:217–245

    Google Scholar 

  • Richter GL, Monshausen GB, Krol A, Gilroy S (2009) Mechanical stimuli modulate lateral root organogenesis. Plant Physiol 151(4):1855–1866. doi:10.1104/pp. 109.142448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Covanova M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zazimalova E, Friml J (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143(1):111–121. doi:10.1016/j.cell.2010.09.027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rolland-Lagan AG, Prusinkiewicz P (2005) Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. Plant J 44(5):854–865. doi:10.1111/j.1365-313X.2005.02581.x

    CAS  PubMed  Google Scholar 

  • Sachs T (1969) Polarity and induction of organized vascular tissues. Ann Bot Lond 33(130):263

    Google Scholar 

  • Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446(7132):199–202. doi:10.1038/Nature05618

    CAS  PubMed  Google Scholar 

  • Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20(8):1015–1027. doi:10.1101/gad.1402406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100(6):635–644

    CAS  PubMed  Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93(10):1415–1425. doi:10.3732/ajb.93.10.1415

    PubMed  Google Scholar 

  • Schoute JC (1913) Beitrage zur Blattstellunglehre. I. Die Theorie. Recueil de Travaux Botaniques Neerlandais 10:153–339

    Google Scholar 

  • Shuai B, Reynaga-Pena CG, Springer PS (2002) The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol 129(2):747–761. doi:10.1104/pp. 010926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103(5):1301–1306. doi:10.1073/pnas.0510457103, 0510457103 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snow M, Snow R (1932) Experiments on phyllotaxis I—the effect of isolating a pininordium. Philos Trans R Soc Lond B 221:1–43. doi:10.1098/rstb.1932.0001

    Google Scholar 

  • Stoma S, Lucas M, Chopard J, Schaedel M, Traas J, Godin C (2008) Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput Biol 4(10):e1000207. doi:10.1371/journal.pcbi.1000207

    PubMed Central  PubMed  Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128(7):1127–1135

    CAS  PubMed  Google Scholar 

  • Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykret D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A, Kwiatkowska D, Hamant O (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149(2):439–451. doi:10.1016/j.cell.2012.02.048

    CAS  PubMed  Google Scholar 

  • van Berkel K, de Boer RJ, Scheres B, Ten Tusscher K (2013) Polar auxin transport: models and mechanisms. Development 140(11):2253–2268. doi:10.1242/dev.079111

    PubMed  Google Scholar 

  • Vernoux T, Kronenberger J, Grandjean O, Laufs P, Traas J (2000) PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127(23):5157–5165

    CAS  PubMed  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guedon Y, Armitage L, Picard F, Guyomarc'h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508. doi:10.1038/msb.2011.39

    PubMed Central  PubMed  Google Scholar 

  • Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132(20):4521–4531. doi:10.1242/dev.02027

    CAS  PubMed  Google Scholar 

  • Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MA, de Vries SC (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15(7):1563–1577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wabnik K, Kleine-Vehn J, Balla J, Sauer M, Naramoto S, Reinohl V, Merks RMH, Govaerts W, Friml J (2010) Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol 6:447. doi:10.1038/Msb.2010.103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wardlaw CW (1949) Phyllotaxis and organogenesis in ferns. Nature 164(4161):167–169. doi:10.1038/164167a0

    Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69(5):843–859

    CAS  PubMed  Google Scholar 

  • Winter CM, Austin RS, Blanvillain-Baufume S, Reback MA, Monniaux M, Wu MF, Sang Y, Yamaguchi A, Yamaguchi N, Parker JE, Parcy F, Jensen ST, Li H, Wagner D (2011) LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell 20(4):430–443. doi:10.1016/j.devcel.2011.03.019

    CAS  PubMed  Google Scholar 

  • Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K, Blilou I, Rouquie D, Benkova E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312(5775):883. doi:10.1126/science.1121356

    CAS  PubMed  Google Scholar 

  • Won C, Shen XL, Mashiguchi K, Zheng ZY, Dai XH, Cheng YF, Kasahara H, Kamiya Y, Chory J, Zhao YD (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108(45):18518–18523. doi:10.1073/pnas.1108436108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143(1):99–110. doi:10.1016/j.cell.2010.09.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav RK, Perales M, Gruel J, Girke T, Jonsson H, Reddy GV (2011) WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25(19):2025–2030. doi:10.1101/gad.17258511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi N, Wu MF, Winter CM, Berns MC, Nole-Wilson S, Yamaguchi A, Coupland G, Krizek BA, Wagner D (2013) A molecular framework for auxin-mediated initiation of flower primordia. Dev Cell 24(3):271–282. doi:10.1016/j.devcel.2012.12.017

    CAS  PubMed  Google Scholar 

  • Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16(11):1123–1127. doi:10.1016/j.cub.2006.04.029

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Olivier Hamant for critical reading of the manuscript and Geraldine Brunoud for providing pictures. The work in the authors’ laboratory is supported by ANR and HFSP grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teva Vernoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Landrein, B., Vernoux, T. (2014). Auxin, Chief Architect of the Shoot Apex. In: Zažímalová, E., Petrášek, J., Benková, E. (eds) Auxin and Its Role in Plant Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1526-8_10

Download citation

Publish with us

Policies and ethics