Skip to main content

Fundamentals of Neuropsychopharmacology

  • Chapter
  • First Online:
Psychiatric Drugs in Children and Adolescents

Abstract

Pharmacology is the science concerned with the interactions between chemical substances and living creatures. A chemical substance that interacts with animals is termed a “pharmacological agent”; it is also referred to colloquially as a “drug.” Psychopharmacology is the branch of neuropharmacology concerned more specifically with pharmaceutical agents that exert an effect on the central nervous system (CNS) and modify mental processes. Their specific purpose is the abolition or amelioration of psychopathological syndromes and mental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

Selected Literature

  • Barbeau A, Sourkes TL, Murphy GF (1962) Les catecholamines dans la maladie de Parkinson. In: de Ajuriaguerra J (ed) Monoamines et système nerveux central. Masson & Cie, Paris, pp 247–262

    Google Scholar 

  • Bertrand D, Galzi JL, Devillers-Thiery A, Bertrand S, Changeux JP (1993) Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotine receptor. Proc Natl Acad Sci U S A 90:6971–6975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) Der l-Dioxyphenylalanineffekt bei der Parkinson-Akinese. Wien Klin Wochenschr 73:787–788

    Google Scholar 

  • Björklund A, Dunnett SB (2007) Dopamine neuron system in the brain: an update. Trends Neurosci 30:194–202

    Article  PubMed  Google Scholar 

  • Blackwell B, Marley E, Price J, Taylor D (1967) Hypertensive interactions between monoamine inhibitors and foodstuffs. Br J Psychiatry 113:349–365

    Article  CAS  PubMed  Google Scholar 

  • Brickley SG, Mody I (2012) Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron 73:23–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive and altering. Neuron 68:815–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen J (ed) (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale

    Google Scholar 

  • Clark AJ (1937) Handbuch der experimentellen Pharmakologie. Vierter Band: General pharmacology. Springer, Berlin

    Google Scholar 

  • Dean B (2002) Changes in the molecular structure of the brain in bipolar disorder: findings using human postmortem brain tissue. World J Biol Psychiatry 3:125–132

    Article  PubMed  Google Scholar 

  • European Medicines Agency (2012) Guideline on good pharmacovigilance practices (GVP). Annex I – definitions. EMA/876333/2011 Rev.1

    Google Scholar 

  • Gassmann M, Bettler B (2012) Regulation of neuronal GABAB receptor functions by subunit composition. Nat Rev Neurosci 13:380–394

    Article  CAS  PubMed  Google Scholar 

  • Gerlach M, Gsell W, Kornhuber J, Jellinger K, Krieger V, Pantucek F, Vock R, Riederer P (1996) A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia-thalamocortical circuits in Parkinson syndrome. Brain Res 741:142–152

    Article  CAS  PubMed  Google Scholar 

  • Girault JA, Greengard P (2004) The neurobiology of dopamine signaling. Arch Neurol 61:641–644

    Article  PubMed  Google Scholar 

  • Hassel B, Dingledine (2005) Glutamate. In: Siegel GJ, Albers RW, Brady S, Price DL (eds) Basic neurochemistry. Molecular, cellular and medical aspects, 7th edn. Academic Press, London, p 267–290

    Google Scholar 

  • Jaber M, Robinson SW, Missale C, Caron MG (1996) Dopamine receptors and brain function. Neuropharmacology 35:1503–1519

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Jessel TM (eds) (1996) Neurowissenschaften: Eine Einführung. Spektrum Akademischer Verlag, Heidelberg/Berlin/Oxford

    Google Scholar 

  • Kenakin T (2004) Principles: Receptor theory in pharmacology. Trends Pharmacol Sci 25:186–192

    Article  CAS  PubMed  Google Scholar 

  • Kuhar MJ, Minneman K, Muly EC (2005) Catecholamines. In: Siegel GJ, Albers RW, Brady S, Price DL (eds) Basic neurochemistry. Molecular, cellular and medical aspects, 7th edn. Academic Press, London, p 211–225

    Google Scholar 

  • Labarca C, Nowak MW, Zhang H, Tang L, Deshpande P, Lester HA (1995) Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376:514–516

    Article  CAS  PubMed  Google Scholar 

  • Laupacis A, Sackett DL, Roberts RS (1988) An assessment of clinically useful measures of the consequences of treatment. N Engl J Med 318:1728–1733

    Article  CAS  PubMed  Google Scholar 

  • Muguruza C, Rodriguez F, Rozas I, Meana JJ, Uriguen L, Callado LF (2013) Antidepressant-like properties of three new alpha 2-adrenoceptor antagonists. Neuropharmacology 65:13–19

    Article  CAS  PubMed  Google Scholar 

  • Murphy DL, Li W, Engel S, Wichems C, Andrews A, Lesch K-P, Uhl G (2001) Genetic perspectives on the serotonin transporter. Brain Res Bull 56:487–494

    Article  CAS  PubMed  Google Scholar 

  • Mutschler E, Geisslinger G, Kroemer HK, Ruth P, Schäfer-Korting M (eds) (2008) Mutschler Arzneimittelwirkungen. Lehrbuch der Pharmakologie und Toxikologie, 9th edn. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Nadler JV (2011) Aspartate release and signalling in the hippocampus. Neurochem Res 36:668–676

    Article  CAS  PubMed  Google Scholar 

  • Nicholas AP, Hökfelt T, Pieribone PA (1996) The distribution and significance of CNS adrenoreceptors examined with in situ hybridization. Trends Pharmacol Sci 17:245–255

    Article  CAS  PubMed  Google Scholar 

  • Olney JW (1978) Neurotoxicity of excitatory amino acids. In: McGeer EG, Olney JW (eds) Kainic acid as a tool in neurobiology. Raven, New York, pp 95–121

    Google Scholar 

  • Paoletti P (2011) Review. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33:1351–1365

    Article  PubMed  Google Scholar 

  • Pupo A, Minneman K (2001) Adrenergic pharmacology: focus on the central nervous system. CNS Spectr 6:656–662

    CAS  PubMed  Google Scholar 

  • Riederer P, Youdim MBH (1986) Monoamine oxidase activity and monoamine metabolism in brains of Parkinsonian patients treated with l-deprenyl. J Neurochem 46:1359–1365

    Google Scholar 

  • Snyder SH (2002) Forty years of neurotransmitters. A personal account. Arch Gen Psychiat 59:983–994

    Article  CAS  PubMed  Google Scholar 

  • Taylor P, Brown JH (2005) Acetylcholine. In: Siegel GJ, Albers RW, Brady S, Price DL (eds) Basic neurochemistry. Molecular, cellular and medical aspects, 7th edn. Academic Press, London, p 185–209

    Google Scholar 

  • Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure and function. Nat Rev Neurosci 4:13–25

    Article  CAS  PubMed  Google Scholar 

  • Wallman M-J, Gagnon D, Parent M (2011) Serotonin innervation of human basal ganglia. Eur J Neurosci 33:1519–1532

    Article  PubMed  Google Scholar 

  • Watling KJ (2006) The Sigma-RBI handbook of receptor classification and signal transduction, 5th edn. Sigma-RBI, Natick

    Google Scholar 

  • Waxham MN (2003) Neurotransmitter receptors. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ (eds) Fundamental neuroscience, 2nd edn. Academic, London, pp 225–258

    Google Scholar 

  • Zimmermann H (1993) Synaptic transmission. Cellular and molecular basis. Thieme, Oxford, p 75

    Google Scholar 

Further Reading

  • Brady CT, Siegel GJ, Albers W, Price DL (eds) (2012) Basic neurochemistry. Principles of molecular, cellular and medical neurobiology, 8th edn. Elsevier, Amsterdam/Boston/Heidelberg/London/New York/Oxford/Paris/San Diego/San Francisco/Singapore/Sydney/Tokyo

    Google Scholar 

  • Grahame-Smith DG, Aronson JK (eds) (2002) Oxford textbook of clinical pharmacology and drug therapy, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Katzung BG, Masters SB, Trevor AJ (eds) (2012) Basic & clinical pharmacology, 12th edn. McGraw-Hill Companies, Columbus

    Google Scholar 

  • Squire LR, Berg D, Bloom FE, du Lac S, Ghosh A, Spitzer NC (eds) (2013) Fundamental neuroscience, 4th edn. Elsevier, Amsterdam/Boston/Heidelberg/London/New York/Oxford/Paris/San Diego/San Francisco/Singapore/Sydney/Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Gerlach PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Gerlach, M. (2014). Fundamentals of Neuropsychopharmacology. In: Gerlach, M., Warnke, A., Greenhill, L. (eds) Psychiatric Drugs in Children and Adolescents. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1501-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1501-5_1

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1500-8

  • Online ISBN: 978-3-7091-1501-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics