• Milena Stavrić
  • Predrag Šiđanin
  • Bojan Tepavčević


This chapter explains five different approaches to the use of digital technology in architectural form-finding research. These shapes are based on structural and geometric logic of architectural forms. The following pages give readers an overview of new scale modelling methods for folded-plate and membrane structures based on computational design, as well as the principles of modelling and digital fabrication of volumetric forms, sectioning elements and geodesic lines. Folding strategies that are crucial for the building of spatial structures, rigid and curved folding techniques are discussed in the section about folding structures, along with the geometric principles with which the process is parametricized. The segment covering membrane structures explains fundamental building logic, as well as different possibilities of software-aided form research and tensile structure construction. Innovative approaches to the application of robotic arms in the research of architectural forms are explained with examples of volumetric structure construction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Balkcom, D.: tRobotic origami folding. Dissertation, Carnegie Mellon University (2002)Google Scholar
  2. [2]
    Bärtschi, R., Knauss, M., Bonwetsch, T., Gramazio, F., Kohler, M.: The wiggledbrickbond. In: Ceccato, C.; Hesselgren, L.; Pauly, M.; Pottmann, H.; Wallner, J. (eds.) Proceedings of Advances in Architectural Geometry 2010, pp.139–148, Springer, Wien (2010)Google Scholar
  3. [3]
    Bechthold, M., King, J., Kane,. A., Niemasz, J., Reinhar, C.: Integrated environmental design and robotic fabrication workflow for ceramic shading systems. In: Proceedings of the 28th International Symposium on Automation and Robotics in Construction, Seoul, 29 June-2 July 2011Google Scholar
  4. [4]
    Belcastro S.M, Hull T.C: A mathematical model for non-flat origami. In: Hull T.(ed.) Origami3, Proceedings of the 3rd International Meeting of Origami Mathematics, Science, and Education, pp. 39–51, Natick (2002)Google Scholar
  5. [5]
    Belcastro, S.M., Hull, T.: Modelling the folding of paper into three dimensions using affine transformations. Linear Algebra and its Application (348), 273–282 (2002)CrossRefGoogle Scholar
  6. [6]
    Bonwetsch, T., Baertschi, R., Oesterle, S.: Adding performance criteria to digital fabrication room ? acoustical information of diffuse respondent panels. In: Silicon + Skin: Biological Processes and Computation: Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Minneapolis, 16–19 October 2008Google Scholar
  7. [7]
    Bonwetsch, T., Gramazio, F., Kohler, M.,: Digitally fabricating non-standardisedbrick walls. In: Sharp D.M.(ed.) Proceedings of the 1st International Conference ManuBuild, Rotterdam (2007)Google Scholar
  8. [8]
    Buri, H.: Origami—Folded plate structures. Dissertation, EcolePolytechniqueFederale de Lausanne (2010)Google Scholar
  9. [9]
    Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O: Minimal surfaces I and II. Grundlehren der mathematischen Wissenschaften, pp. 295–296, Springer, Heidelberg (1992)Google Scholar
  10. [11]
    Frei, O.: Prinzip Leichtbau — Lightweight Principle. University of Stuttgart (1998)Google Scholar
  11. [12]
    Frei, O.: Konstruktion — ein Vorschlag zur Ordnung und Beschreibung von Konstruktionen. University of Stuttgart (1992)Google Scholar
  12. [13]
    Höller, R.: FormFindung — architektonische Grundlagen für den Entwurf von mechanisch vorgespannten Membranen und Seilnetzen. Mähringen (1999)Google Scholar
  13. [14]
    Hunt, W.G., Ario, I.: Twist buckling and the foldable cylinder: an exercise in origami. International Journal of Non-Linear Mechanics. 40(6), 833–843 (2005)CrossRefGoogle Scholar
  14. [15]
    Jackson, P: Folding Techniques for Designers — From Sheet to Form. Laurence King Publisher (2011)Google Scholar
  15. [16]
    Kawasaki, T.: On the relation between mountain?creases and valley-creases of a flat origami. In: Lang, R. (ed.) Proceedings of the First International Meeting of Origami Science and Technology, Padua (1989)Google Scholar
  16. [18]
    Mitani, J.: A Design method for 3d origami based on rotational sweep. Computer-aided Design and Application, 6(1), 69–79 (2009). doi: 10.3722/cadaps.2009.69-79Google Scholar
  17. [19]
    Miura, K.: Proposition of pseudo-cylindrical concave polyhedral shells. ISA report, University of Tokyo, No. 442 (1969)Google Scholar
  18. [20]
    Miyazaki, S., Yasuda, T. Yokoi, S., Toriwaki J.: An origami playing simulator in the virtual space. The Journal of Visualization and Computer Animation, 7(1), 25–42 (1996)CrossRefGoogle Scholar
  19. [21]
    Nojima, T.: Modelling of folding patterns in flat membranes and cylinders by origami. JSME International Journal Series C,45(1), 364–370 (2002). doi: 10.1299/jsmec.45.364CrossRefGoogle Scholar
  20. [22]
    Oesterle, S.: Cultural performance in robotic timber construction inreForm(). In: Proceedings of ACADIA 2009, Chicago, 22–25 October, 2009Google Scholar
  21. [23]
    Payne, A.: A five-axis robotic motion controller for designers. In: Proceedings of the ACADIA 2011, Calgary, 11–16 October, 2011Google Scholar
  22. [24]
    Pottmann, H., et al: Geodesicpatterns. In: Proceedings of the SIGGRAPH 2010, Vancouver, 7–11 August 2010Google Scholar
  23. [26]
    Tachi, T.: Generalisation of rigid foldable quadriteralmesh origami. In: Proceedings of International Association for Shell and Spatial Structures (LASS) Symposium 2019, Universidad Politecnica de Valencia, 28 September-2 October 2009Google Scholar
  24. [27]
    Tachi, T.: Geometric considerations for the design of rigid origami structures. In: Proceedings of International Association for Shell and Spatial Structures (LASS) Symposium 2010, Shanghai, 8–12 NovemberGoogle Scholar
  25. [28]
    Tachi, T.: Rigid-foldable thick origami. TT/origami/. Accessed 10 Feb 2012Google Scholar
  26. [29]
    Tachi, T: Freeform origami. ffo Accessed 10 Feb 2012Google Scholar
  27. [30]
    Wallner, J., et al: Tiling freeform shapes with straight panels. In: Algorithmic Methods, Advances in Architectural geometry 2010, Springer WienNewYork, 2010, p.p. 73–86.CrossRefGoogle Scholar
  28. [31]
    Zeier, F: Papier — Versuche zwischen Geometrie und Spiel, Haupt Verlag (2009)Google Scholar
  29. [32]
    Zimmer, H., Campen, M. Bommes, D., Kobbelt, L.: Rationalization of triangle-based point-folding structures. In: Cignoni, P. Ertl, T. (eds.) Processing of Eurographics, Cagliari (2012)Google Scholar

Copyright information

© Springer-Verlag/Wien 2013

Authors and Affiliations

  • Milena Stavrić
    • 1
  • Predrag Šiđanin
    • 2
  • Bojan Tepavčević
    • 2
  1. 1.Graz University of TechnologyAustria
  2. 2.University of Novi SadSerbia

Personalised recommendations