Skip to main content

Experimental Models of Glioma

  • Chapter
  • First Online:
Glioma Cell Biology

Abstract

The development and refinement of animal models of gliomagenesis has been fundamental to test hypotheses concerning the etiology of gliomas and their molecular and cellular pathogenesis. During the last few decades, modeling has gained in complexity and is nowadays mostly relying on the cell type-specific modulation of the expression of candidate oncogenes and oncosuppressors. Despite such technological advances, the recent appreciation of the molecular heterogeneity underlying human high-grade glioma variability revealed the need for a deeper characterization of the available models. It is now clear that most of the existing animal systems mimic one of the human molecular classes, known as “proneural,” leaving the other groups underrepresented. While there is thus the need for an expansion of the range of available models, existing ones have already proven useful as translational research platforms, allowing preliminary assessment of the efficacy of classical and innovative therapeutic approaches. In this contribution, we provide a general view of the field and synthesize our understanding of the biology of the most thoroughly studied model family, that of platelet-derived growth factor (PDGF)-induced gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bFGF:

basic fibroblast growth factor

CSF:

Colony-stimulating factor

EGF:

Epidermal growth factor

EGFR:

EGF receptor

GFAP:

Glial fibrillary acidic protein

GIC:

Glioma-initiating cells

NF1:

Neurofibromin-1

OPC:

Oligodendrocyte progenitor cell

PDGF:

Platelet-derived growth factor

PDGFR:

PDGF receptor

PI3K:

Phosphatidylinositide-3-kinase

PTEN:

Phosphatase and tensin homolog deleted from chromosome 10

Rb:

Retinoblastoma protein

RG:

Radial glia

RGC:

Radial glia cell

RTK:

Receptor tyrosine kinase

References

  • Acquaviva J, Jun HJ, Lessard J, Ruiz R, Zhu H, Donovan M et al (2011) Chronic activation of wild-type epidermal growth factor receptor and loss of Cdkn2a cause mouse glioblastoma formation. Cancer Res 71:7198–7206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alcantara Llaguno S, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK et al (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15:45–56

    PubMed Central  PubMed  Google Scholar 

  • Appolloni I, Calzolari F, Tutucci E, Caviglia S, Terrile M, Corte G et al (2009) PDGF-B induces a homogeneous class of oligodendrogliomas from embryonic neural progenitors. Int J Cancer 124:2251–2259

    CAS  PubMed  Google Scholar 

  • Appolloni I, Calzolari F, Barilari M, Terrile M, Daga A, Malatesta P (2012a) Antagonistic modulation of gliomagenesis by Pax6 and Olig2 in PDGF-induced oligodendroglioma. Int J Cancer 131:E1078–E1087

    CAS  PubMed  Google Scholar 

  • Appolloni I, Curreli S, Caviglia S, Barilari M, Gambini E, Pagano A et al (2012b) Role of Btg2 in the progression of a PDGF-induced oligodendroglioma model. Int J Mol Sci 13:14667–14678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26:6781–6790

    CAS  PubMed  Google Scholar 

  • Assanah MC, Bruce JN, Suzuki SO, Chen A, Goldman JE, Canoll P (2009) PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia 57:1835–1847

    CAS  PubMed  Google Scholar 

  • Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ et al (2002) Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1:269–277

    CAS  PubMed  Google Scholar 

  • Bajenaru ML, Hernandez MR, Perry A, Zhu Y, Parada LF, Garbow JR et al (2003) Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res 63:8573–8577

    CAS  PubMed  Google Scholar 

  • Barrett LE, Granot Z, Coker C, Iavarone A, Hambardzumyan D, Holland EC et al (2012) Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. Cancer Cell 21:11–24

    CAS  PubMed  Google Scholar 

  • Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 94:299–312

    PubMed Central  PubMed  Google Scholar 

  • Barth RF, Yang W, Coderre JA (2003) Rat brain tumor models to assess the efficacy of boron neutron capture therapy: a critical evaluation. J Neurooncol 62:61–74

    PubMed  Google Scholar 

  • Bencokova Z, Pauron L, Devic C, Joubert A, Gastaldo J, Massart C et al (2008) Molecular and cellular response of the most extensively used rodent glioma models to radiation and/or cisplatin. J Neurooncol 86:13–21

    CAS  PubMed  Google Scholar 

  • Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371

    CAS  PubMed  Google Scholar 

  • Benda P, Someda K, Messer J, Sweet WH (1971) Morphological and immunochemical studies of rat glial tumors and clonal strains propagated in culture. J Neurosurg 34:310–323

    CAS  PubMed  Google Scholar 

  • Bhat KP, Salazar KL, Balasubramaniyan V, Wani K, Heathcock L, Hollingsworth F et al (2011) The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev 25:2594–2609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biston MC, Joubert A, Adam JF, Elleaume H, Bohic S, Charvet AM et al (2004) Cure of Fisher rats bearing radioresistant F98 glioma treated with cis-platinum and irradiated with monochromatic synchrotron X-rays. Cancer Res 64:2317–2323

    CAS  PubMed  Google Scholar 

  • Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP et al (2008) Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A 105:3581–3586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calzolari F, Malatesta P (2010) Recent insights into PDGF-induced gliomagenesis. Brain Pathol 20:527–538

    CAS  PubMed  Google Scholar 

  • Calzolari F, Appolloni I, Tutucci E, Caviglia S, Terrile M, Corte G et al (2008) Tumor progression and oncogene addiction in a PDGF-B-induced model of gliomagenesis. Neoplasia 10:1373–1382, following 82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan DA, Giaccia AJ (2011) Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10:351–364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charest A, Wilker EW, McLaughlin ME, Lane K, Gowda R, Coven S et al (2006) ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res 66:7473–7481

    CAS  PubMed  Google Scholar 

  • Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D et al (2010) Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6:141–152

    CAS  PubMed  Google Scholar 

  • Chojnacki A, Mak G, Weiss S (2011) PDGFRalpha expression distinguishes GFAP-expressing neural stem cells from PDGF-responsive neural precursors in the adult periventricular area. J Neurosci 31:9503–9512

    CAS  PubMed  Google Scholar 

  • Chow LM, Endersby R, Zhu X, Rankin S, Qu C, Zhang J et al (2011) Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell 19:305–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciznadija D, Liu Y, Pyonteck SM, Holland EC, Koff A (2011) Cyclin D1 and cdk4 mediate development of neurologically destructive oligodendroglioma. Cancer Res 71:6174–6183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH et al (2012) Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med 18:519–527

    CAS  PubMed Central  PubMed  Google Scholar 

  • da Fonseca AC, Badie B (2013) Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol 2013:264124

    PubMed  Google Scholar 

  • Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Danks RA, Orian JM, Gonzales MF, Tan SS, Alexander B, Mikoshiba K et al (1995) Transformation of astrocytes in transgenic mice expressing SV40 T antigen under the transcriptional control of the glial fibrillary acidic protein promoter. Cancer Res 55:4302–4310

    CAS  PubMed  Google Scholar 

  • Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442

    CAS  PubMed  Google Scholar 

  • Dinapoli RP, Brown LD, Arusell RM, Earle JD, O’Fallon JR, Buckner JC et al (1993) Phase III comparative evaluation of PCNU and carmustine combined with radiation therapy for high-grade glioma. J Clin Oncol 11:1316–1321

    CAS  PubMed  Google Scholar 

  • Ding H, Roncari L, Shannon P, Wu X, Lau N, Karaskova J et al (2001) Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 61:3826–3836

    CAS  PubMed  Google Scholar 

  • Ding H, Shannon P, Lau N, Wu X, Roncari L, Baldwin RL et al (2003) Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 63:1106–1113

    CAS  PubMed  Google Scholar 

  • Doucette TA, Kong LY, Yang Y, Ferguson SD, Yang J, Wei J et al (2012) Signal transducer and activator of transcription 3 promotes angiogenesis and drives malignant progression in glioma. Neuro Oncol 14:1136–1145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dougherty JD, Fomchenko EI, Akuffo AA, Schmidt E, Helmy KY, Bazzoli E et al (2012) Candidate pathways for promoting differentiation or quiescence of oligodendrocyte progenitor-like cells in glioma. Cancer Res 72:4856–4868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Druckrey H, Ivankovic S, Preussmann R (1966) Teratogenic and carcinogenic effects in the offspring after single injection of ethylnitrosourea to pregnant rats. Nature 210:1378–1379

    CAS  PubMed  Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New Engl J Med 315:1650–1659

    CAS  PubMed  Google Scholar 

  • Ernst A, Hofmann S, Ahmadi R, Becker N, Korshunov A, Engel F et al (2009) Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin Cancer Res 15:6541–6550

    CAS  PubMed  Google Scholar 

  • Eyre HJ, Eltringham JR, Gehan EA, Vogel FS, Al-Sarraf M, Talley RW et al (1986) Randomized comparisons of radiotherapy and carmustine versus procarbazine versus dacarbazine for the treatment of malignant gliomas following surgery: a Southwest Oncology Group Study. Cancer Treat Rep 70:1085–1090

    CAS  PubMed  Google Scholar 

  • Finkelstein SD, Black P, Nowak TP, Hand CM, Christensen S, Finch PW (1994) Histological characteristics and expression of acidic and basic fibroblast growth factor genes in intracerebral xenogeneic transplants of human glioma cells. Neurosurgery 34:136–143

    CAS  PubMed  Google Scholar 

  • Flanagan SP (1966) ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet Res 8:295–309

    CAS  PubMed  Google Scholar 

  • Fomchenko EI, Dougherty JD, Helmy KY, Katz AM, Pietras A, Brennan C et al (2011) Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PLoS One 6:e20605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O et al (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    CAS  PubMed  Google Scholar 

  • Gambini E, Reisoli E, Appolloni I, Gatta V, Campadelli-Fiume G, Menotti L et al (2012) Replication-competent herpes simplex virus retargeted to HER2 as therapy for high-grade glioma. Mol Ther 20:994–1001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greene HS (1952) The significance of the heterologous transplantability of human cancer. Cancer 5:24–44

    CAS  PubMed  Google Scholar 

  • Hack MA, Sugimori M, Lundberg C, Nakafuku M, Gotz M (2004) Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol Cell Neurosci 25:664–678

    CAS  PubMed  Google Scholar 

  • Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM et al (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8:865–872

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Hartfuss E, Galli R, Heins N, Gotz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30

    CAS  PubMed  Google Scholar 

  • Helmy K, Halliday J, Fomchenko E, Setty M, Pitter K, Hafemeister C et al (2012) Identification of global alteration of translational regulation in glioma in vivo. PLoS One 7:e46965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hill RA, Patel KD, Medved J, Reiss AM, Nishiyama A (2013) NG2 cells in white matter but not gray matter proliferate in response to PDGF. J Neurosci 33:14558–14566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland EC, Varmus HE (1998) Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci U S A 95:1218–1223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland EC, Hively WP, DePinho RA, Varmus HE (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675–3685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57

    CAS  PubMed  Google Scholar 

  • Houchens DP, Ovejera AA, Riblet SM, Slagel DE (1983) Human brain tumor xenografts in nude mice as a chemotherapy model. Eur J Cancer Clin Oncol 19:799–805

    CAS  PubMed  Google Scholar 

  • Hu X, Pandolfi PP, Li Y, Koutcher JA, Rosenblum M, Holland EC (2005) mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 7:356–368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu JG, Fu SL, Wang YX, Li Y, Jiang XY, Wang XF et al (2008) Platelet-derived growth factor-AA mediates oligodendrocyte lineage differentiation through activation of extracellular signal-regulated kinase signaling pathway. Neuroscience 151:138–147

    CAS  PubMed  Google Scholar 

  • Hukkelhoven E, Liu Y, Yeh N, Ciznadija D, Blain SW, Koff A (2012) Tyrosine phosphorylation of the p21 cyclin-dependent kinase inhibitor facilitates the development of proneural glioma. J Biol Chem 287:38523–38530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH et al (2009) The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23:1327–1337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huszthy PC, Brekken C, Pedersen TB, Thorsen F, Sakariassen PO, Skaftnesmo KO et al (2006) Antitumor efficacy improved by local delivery of species-specific endostatin. J Neurosurg 104:118–128

    CAS  PubMed  Google Scholar 

  • Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    PubMed  Google Scholar 

  • Ikezaki K, Nomura T, Takahashi M, Zieroth BF, Fukui M (1994) MRI contrast enhancement by Mn-TPPS in experimental rat brain tumor with peripheral benzodiazepine receptors. Acta Neurochir Suppl 60:353–355

    CAS  PubMed  Google Scholar 

  • Iwadate Y, Inoue M, Saegusa T, Tokusumi Y, Kinoh H, Hasegawa M et al (2005) Recombinant Sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats. Clin Cancer Res 11:3821–3827

    CAS  PubMed  Google Scholar 

  • Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S et al (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51:187–199

    CAS  PubMed  Google Scholar 

  • Jang ES, Goldman JE (2011) Pax6 expression is sufficient to induce a neurogenic fate in glial progenitors of the neonatal subventricular zone. PLoS One 6:e20894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson FK, Brodd J, Eklof C, Ferletta M, Hesselager G, Tiger CF et al (2004) Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging. Proc Natl Acad Sci U S A 101:11334–11337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson FK, Goransson H, Westermark B (2005) Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. Oncogene 24:3896–3905

    CAS  PubMed  Google Scholar 

  • Jones EL, Searle CE, Smith WT (1973) Tumours of the nervous system induced in rats by the neonatal administration of N-ethyl-N-nitrosourea. J Pathol 109:123–139

    CAS  PubMed  Google Scholar 

  • Kareva I, Hahnfeldt P (2013) The emerging “hallmarks” of metabolic reprogramming and immune evasion: distinct or linked? Cancer Res 73:2737–2742

    CAS  PubMed  Google Scholar 

  • Katz AM, Amankulor NM, Pitter K, Helmy K, Squatrito M, Holland EC (2012) Astrocyte-specific expression patterns associated with the PDGF-induced glioma microenvironment. PLoS One 7:e32453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    CAS  PubMed  Google Scholar 

  • Ko L, Koestner A, Wechsler W (1980) Morphological characterization of nitrosourea-induced glioma cell lines and clones. Acta Neuropathol 51:23–31

    CAS  PubMed  Google Scholar 

  • Koutcher JA, Hu X, Xu S, Gade TP, Leeds N, Zhou XJ et al (2002) MRI of mouse models for gliomas shows similarities to humans and can be used to identify mice for preclinical trials. Neoplasia 4:480–485

    PubMed Central  PubMed  Google Scholar 

  • Krementz ET, Greene HS (1953) Heterologous transplantation of human neural tumors. Cancer 6:100–110

    CAS  PubMed  Google Scholar 

  • Kruse CA, Molleston MC, Parks EP, Schiltz PM, Kleinschmidt-DeMasters BK, Hickey WF (1994) A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J Neurooncol 22:191–200

    CAS  PubMed  Google Scholar 

  • Kwon CH, Zhao D, Chen J, Alcantara S, Li Y, Burns DK et al (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68:3286–3294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laerum OD, Rajewsky MF (1975) Neoplastic transformation of fetal rat brain cells in culture after exposure to ethylnitrosourea in vivo. J Natl Cancer Inst 55:1177–1187

    CAS  PubMed  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    CAS  PubMed  Google Scholar 

  • Lei L, Sonabend AM, Guarnieri P, Soderquist C, Ludwig T, Rosenfeld S et al (2011) Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS One 6:e20041

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li A, Walling J, Kotliarov Y, Center A, Steed ME, Ahn SJ et al (2008) Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res 6:21–30

    CAS  PubMed  Google Scholar 

  • Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL et al (2004) The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol 63:499–509

    CAS  PubMed  Google Scholar 

  • Ligon KL, Fancy SP, Franklin RJ, Rowitch DH (2006) Olig gene function in CNS development and disease. Glia 54:1–10

    PubMed  Google Scholar 

  • Ligon KL, Huillard E, Mehta S, Kesari S, Liu H, Alberta JA et al (2007) Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 53:503–517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Yeh N, Zhu XH, Leversha M, Cordon-Cardo C, Ghossein R et al (2007) Somatic cell type specific gene transfer reveals a tumor-promoting function for p21(Waf1/Cip1). EMBO J 26:4683–4693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Raheja R, Yeh N, Ciznadija D, Pedraza AM, Ozawa T et al (2014) TRIM3, a tumor suppressor linked to regulation of p21(Waf1/Cip1). Oncogene 33(3):308–315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez KA, Tannenbaum AM, Assanah MC, Linskey K, Yun J, Kangarlu A et al (2011) Convection-enhanced delivery of topotecan into a PDGF-driven model of glioblastoma prolongs survival and ablates both tumor-initiating cells and recruited glial progenitors. Cancer Res 71:3963–3971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahesparan R, Read TA, Lund-Johansen M, Skaftnesmo KO, Bjerkvig R, Engebraaten O (2003) Expression of extracellular matrix components in a highly infiltrative in vivo glioma model. Acta Neuropathol 105:49–57

    CAS  PubMed  Google Scholar 

  • Malatesta P, Appolloni I, Calzolari F (2008) Radial glia and neural stem cells. Cell Tissue Res 331:165–178

    PubMed  Google Scholar 

  • Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15:110–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • McConville P, Hambardzumyan D, Moody JB, Leopold WR, Kreger AR, Woolliscroft MJ et al (2007) Magnetic resonance imaging determination of tumor grade and early response to temozolomide in a genetically engineered mouse model of glioma. Clin Cancer Res 13:2897–2904

    CAS  PubMed  Google Scholar 

  • Mehta S, Huillard E, Kesari S, Maire CL, Golebiowski D, Harrington EP et al (2011) The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma. Cancer Cell 19:359–371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Menotti L, Cerretani A, Hengel H, Campadelli-Fiume G (2008) Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2. J Virol 82:10153–10161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A 101:17528–17532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Momota H, Nerio E, Holland EC (2005) Perifosine inhibits multiple signaling pathways in glial progenitors and cooperates with temozolomide to arrest cell proliferation in gliomas in vivo. Cancer Res 65:7429–7435

    CAS  PubMed  Google Scholar 

  • Muller FL, Colla S, Aquilanti E, Manzo VE, Genovese G, Lee J et al (2012) Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 488:337–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK et al (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86

    CAS  PubMed  Google Scholar 

  • Ono K, Takebayashi H, Ikenaka K (2009) Olig2 transcription factor in the developing and injured forebrain; cell lineage and glial development. Mol Cells 27:397–401

    CAS  PubMed  Google Scholar 

  • Ortega F, Gascon S, Masserdotti G, Deshpande A, Simon C, Fischer J et al (2013) Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 15:602–613

    CAS  PubMed  Google Scholar 

  • Oshiro S, Liu Y, Fukushima T, Asotra K, Black KL (2001) Modified immunoregulation associated with interferon-gamma treatment of rat glioma. Neurol Res 23:359–366

    CAS  PubMed  Google Scholar 

  • Owens GC, Orr EA, DeMasters BK, Muschel RJ, Berens ME, Kruse CA (1998) Overexpression of a transmembrane isoform of neural cell adhesion molecule alters the invasiveness of rat CNS-1 glioma. Cancer Res 58:2020–2028

    CAS  PubMed  Google Scholar 

  • Parsa AT, Chakrabarti I, Hurley PT, Chi JH, Hall JS, Kaiser MG et al (2000) Limitations of the C6/Wistar rat intracerebral glioma model: implications for evaluating immunotherapy. Neurosurgery 47:993–999, discussion 9-1000

    CAS  PubMed  Google Scholar 

  • Plowman J, Waud WR, Koutsoukos AD, Rubinstein LV, Moore TD, Grever MR (1994) Preclinical antitumor activity of temozolomide in mice: efficacy against human brain tumor xenografts and synergism with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 54:3793–3799

    CAS  PubMed  Google Scholar 

  • Ponten J, Macintyre EH (1968) Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 74:465–486

    CAS  PubMed  Google Scholar 

  • Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272

    CAS  PubMed  Google Scholar 

  • Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ran C, Liu H, Hitoshi Y, Israel MA (2013) Proliferation-independent control of tumor glycolysis by PDGFR-mediated AKT activation. Cancer Res 73:1831–1843

    CAS  PubMed  Google Scholar 

  • Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T (2000) Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 26:109–113

    CAS  PubMed  Google Scholar 

  • Reisoli E, Gambini E, Appolloni I, Gatta V, Barilari M, Menotti L et al (2012) Efficacy of HER2 retargeted herpes simplex virus as therapy for high-grade glioma in immunocompetent mice. Cancer Gene Ther 19:788–795

    CAS  PubMed  Google Scholar 

  • Sandstrom M, Johansson M, Bergstrom P, Bergenheim AT, Henriksson R (2008) Effects of the VEGFR inhibitor ZD6474 in combination with radiotherapy and temozolomide in an orthotopic glioma model. J Neurooncol 88:1–9

    PubMed  Google Scholar 

  • Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9:628–638

    CAS  PubMed  Google Scholar 

  • See WL, Heinberg AR, Holland EC, Resh MD (2010) p27 deficiency is associated with migration defects in PDGF-expressing gliomas in vivo. Cell Cycle 9:1562–1567

    CAS  PubMed  Google Scholar 

  • Sheehan J, Ionescu A, Pouratian N, Hamilton DK, Schlesinger D, Oskouian RJ Jr et al (2008) Use of trans sodium crocetinate for sensitizing glioblastoma multiforme to radiation: laboratory investigation. J Neurosurg 108:972–978

    PubMed  Google Scholar 

  • Simon C, Gotz M, Dimou L (2011) Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59:869–881

    PubMed  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  • Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S et al (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. Cell Stem Cell 12:426–439

    CAS  PubMed  Google Scholar 

  • Slagel DE, Feola J, Houchens DP, Ovejera AA (1982) Combined modality treatment using radiation and/or chemotherapy in an athymic nude mouse-human medulloblastoma and glioblastoma xenograft model. Cancer Res 42:812–816

    CAS  PubMed  Google Scholar 

  • Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ et al (2011) Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20:810–817

    CAS  PubMed  Google Scholar 

  • Squatrito M, Brennan CW, Helmy K, Huse JT, Petrini JH, Holland EC (2010) Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18:619–629

    CAS  PubMed  Google Scholar 

  • Sun Y, Meijer DH, Alberta JA, Mehta S, Kane MF, Tien AC et al (2011) Phosphorylation state of Olig2 regulates proliferation of neural progenitors. Neuron 69:906–917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szczurek E, Misra N, Vingron M (2013) Synthetic sickness or lethality points at candidate combination therapy targets in glioblastoma. Int J Cancer 133:2123–2132

    CAS  PubMed  Google Scholar 

  • Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y et al (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 109:3041–3046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanriover N, Ulu MO, Sanus GZ, Bilir A, Canbeyli R, Oz B et al (2008) The effects of systemic and intratumoral interleukin-12 treatment in C6 rat glioma model. Neurol Res 30:511–517

    CAS  PubMed  Google Scholar 

  • Tchougounova E, Kastemar M, Brasater D, Holland EC, Westermark B, Uhrbom L (2007) Loss of Arf causes tumor progression of PDGFB-induced oligodendroglioma. Oncogene 26:6289–6296

    CAS  PubMed  Google Scholar 

  • Uhrbom L, Hesselager G, Nister M, Westermark B (1998) Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58:5275–5279

    CAS  PubMed  Google Scholar 

  • Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558

    CAS  PubMed  Google Scholar 

  • Valable S, Lemasson B, Farion R, Beaumont M, Segebarth C, Remy C et al (2008) Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study. NMR Biomed 21:1043–1056

    CAS  PubMed  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vigano F, Mobius W, Gotz M, Dimou L (2013) Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci 16:1370–1372

    CAS  PubMed  Google Scholar 

  • Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE et al (2009) Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15:514–526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warnke PC, Blasberg RG, Groothuis DR (1987) The effect of hyperosmotic blood-brain barrier disruption on blood-to-tissue transport in ENU-induced gliomas. Ann Neurol 22:300–305

    CAS  PubMed  Google Scholar 

  • Wei Q, Clarke L, Scheidenhelm DK, Qian B, Tong A, Sabha N et al (2006) High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res 66:7429–7437

    CAS  PubMed  Google Scholar 

  • Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H et al (2003) Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 63:1589–1595

    CAS  PubMed  Google Scholar 

  • Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1:157–168

    CAS  PubMed  Google Scholar 

  • Xiao A, Yin C, Yang C, Di Cristofano A, Pandolfi PP, Van Dyke T (2005) Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res 65:5172–5180

    CAS  PubMed  Google Scholar 

  • Yang WQ, Lun X, Palmer CA, Wilcox ME, Muzik H, Shi ZQ et al (2004) Efficacy and safety evaluation of human reovirus type 3 in immunocompetent animals: racine and nonhuman primates. Clin Cancer Res 10:8561–8576

    PubMed  Google Scholar 

  • Yuan H, Schroeder T, Bowsher JE, Hedlund LW, Wong T, Dewhirst MW (2006) Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 47:989–998

    CAS  PubMed  Google Scholar 

  • Yun J, Rothrock RJ, Canoll P, Bruce JN (2013) Convection-enhanced delivery for targeted delivery of antiglioma agents: the translational experience. J Drug Deliv 2013:107573

    PubMed Central  PubMed  Google Scholar 

  • Zhang D, Feng XY, Henning TD, Wen L, Lu WY, Pan H et al (2009) MR imaging of tumor angiogenesis using sterically stabilized Gd-DTPA liposomes targeted to CD105. Eur J Radiol 70:180–189

    PubMed  Google Scholar 

  • Zhang B, Sun X, Mei H, Wang Y, Liao Z, Chen J et al (2013a) LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 34:9171–9182

    CAS  PubMed  Google Scholar 

  • Zhang J, Shin MC, David AE, Zhou J, Lee K, He H et al (2013b) Long-circulating heparin-functionalized magnetic nanoparticles for potential application as a protein drug delivery platform. Mol Pharm 10(10):3892–3902

    CAS  PubMed  Google Scholar 

  • Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ et al (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP et al (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu H, Acquaviva J, Ramachandran P, Boskovitz A, Woolfenden S, Pfannl R et al (2009) Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci 106:2712–2716

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paolo Malatesta or Filippo Calzolari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Malatesta, P., Calzolari, F., Appolloni, I. (2014). Experimental Models of Glioma. In: Sedo, A., Mentlein, R. (eds) Glioma Cell Biology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1431-5_13

Download citation

Publish with us

Policies and ethics