Advertisement

Vascular-Resident Endothelial Side Population Cells

  • Hisamichi NaitoEmail author
  • Nobuyuki Takakura
Chapter

Abstract

Postnatal neovascular formation was originally thought to be mediated by angiogenesis, which is defined as the formation of new blood vessels from pre-existing endothelial cells (ECs). However, over the last decade, it has been proposed that vasculogenesis, that is, de novo blood vessel generation from endothelial progenitor cells (EPCs) derived from bone marrow, may persist into adult life. Nonetheless, it is still a matter of debate as to what extent the EPCs contribute to new vessel formation in the adult.

In the peripheral blood vessels, the presence of different stem and progenitor cell types residing in the media and adventitia of the vascular wall has been suggested. These stem/progenitor cells were reported to have the ability to differentiate into ECs in culture and form capillary-like microvessels in ex vivo assays. However, the precise roles of these cells during angiogenic growth are not well defined. We recently isolated a novel endothelial stem/progenitor-like cells from the intima of adult murine blood vessels using the Hoechst method in which stem cell populations are identified as side populations. This vascular endothelial side population cell possesses colony-forming ability, generates large numbers of ECs, and when transplanted into ischemic lesions, these cells contribute to the newly formed long-term surviving blood vessels and restore blood flow completely. Our discovery of vascular endothelial side population cells that have features of endothelial stem/progenitor cells may lead to the identification of new targets for vascular regeneration therapy as well as vascular disrupting therapy.

Keywords

Endothelium Side population FACS analysis Heterogeneity Stemness Regeneration 

Abbreviations

BM

Bone marrow

ECs

Endothelial cells

EPCs

Endothelial progenitor cells

FACS

Fluorescence-activated cell sorting

HAECs

Human aortic endothelial cells

HC

Hematopoietic cell

HSC

Hematopoietic stem cell

HUVECs

Human umbilical vein endothelial cells

KSL

c-Kit+ Sca-1+, and Lineage

MP

Main population

SMCs

Smooth muscle cells

SP

Side population

Notes

Acknowledgments

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology and Japan Society for the Promotion of Science of Japan.

References

  1. 1.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedCrossRefGoogle Scholar
  2. 2.
    Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611PubMedCrossRefGoogle Scholar
  3. 3.
    Mimeault M, Batra SK (2008) Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev 4(1):27–49PubMedCrossRefGoogle Scholar
  4. 4.
    Lin KK, Goodell MA (2011) Detection of hematopoietic stem cells by flow cytometry. Methods Cell Biol 103:21–30PubMedCrossRefGoogle Scholar
  5. 5.
    Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Miura Y, Suda T (1992) In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80(12):3044–3050PubMedGoogle Scholar
  6. 6.
    Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241(4861):58–62PubMedCrossRefGoogle Scholar
  7. 7.
    Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121PubMedCrossRefGoogle Scholar
  8. 8.
    Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T (2000) A role for hematopoietic stem cells in promoting angiogenesis. Cell 102(2):199–209PubMedCrossRefGoogle Scholar
  9. 9.
    Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98(25):14541–14546PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273(5272):242–245PubMedCrossRefGoogle Scholar
  11. 11.
    Pallavicini MG, Summers LJ, Dean PN, Gray JW (1985) Enrichment of murine hemopoietic clonogenic cells by multivariate analyses and sorting. Exp Hematol 13(11):1173–1181PubMedGoogle Scholar
  12. 12.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806PubMedCrossRefGoogle Scholar
  13. 13.
    Chaudhary PM, Roninson IB (1991) Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66(1):85–94PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034PubMedCrossRefGoogle Scholar
  15. 15.
    Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159(1):123–134PubMedCrossRefGoogle Scholar
  16. 16.
    Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245(1):42–56PubMedCrossRefGoogle Scholar
  17. 17.
    Shimano K, Satake M, Okaya A, Kitanaka J, Kitanaka N, Takemura M, Sakagami M, Terada N, Tsujimura T (2003) Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. Am J Pathol 163(1):3–9PubMedCrossRefGoogle Scholar
  18. 18.
    Summer R, Kotton DN, Sun X, Ma B, Fitzsimmons K, Fine A (2003) Side population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol 285(1):L97–L104PubMedGoogle Scholar
  19. 19.
    Lassalle B, Bastos H, Louis JP, Riou L, Testart J, Dutrillaux B, Fouchet P, Allemand I (2004) ‘Side Population’ cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development 131(2):479–487PubMedCrossRefGoogle Scholar
  20. 20.
    Redvers RP, Li A, Kaur P (2006) Side population in adult murine epidermis exhibits phenotypic and functional characteristics of keratinocyte stem cells. Proc Natl Acad Sci U S A 103(35):13168–13173PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Oyama T, Nagai T, Wada H, Naito AT, Matsuura K, Iwanaga K, Takahashi T, Goto M, Mikami Y, Yasuda N, Akazawa H, Uezumi A, Takeda S, Komuro I (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176(3):329–341PubMedCrossRefGoogle Scholar
  22. 22.
    Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 101(3):781–786PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101(39):14228–14233PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Croop JM, Raymond M, Haber D, Devault A, Arceci RJ, Gros P, Housman DE (1989) The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol Cell Biol 9(3):1346–1350PubMedCentralPubMedGoogle Scholar
  25. 25.
    Huls M, van den Heuvel JJ, Dijkman HB, Russel FG, Masereeuw R (2006) ABC transporter expression profiling after ischemic reperfusion injury in mouse kidney. Kidney Int 69(12):2186–2193PubMedCrossRefGoogle Scholar
  26. 26.
    Miller DS (2010) Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol Sci 31(6):246–254PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Golebiewska A, Brons NH, Bjerkvig R, Niclou SP (2011) Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8(2):136–147PubMedCrossRefGoogle Scholar
  28. 28.
    Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530(1–3):239–243PubMedCrossRefGoogle Scholar
  29. 29.
    Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100(21):12313–12318PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC, Gallardo TD, Garry DJ (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265(1):262–275PubMedCrossRefGoogle Scholar
  31. 31.
    Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R (2005) CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97(1):52–61PubMedCrossRefGoogle Scholar
  32. 32.
    Mouquet F, Pfister O, Jain M, Oikonomopoulos A, Ngoy S, Summer R, Fine A, Liao R (2005) Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 97(11):1090–1092PubMedCrossRefGoogle Scholar
  33. 33.
    Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52(2):237–268PubMedGoogle Scholar
  34. 34.
    Torsney E, Xu Q (2011) Resident vascular progenitor cells. J Mol Cell Cardiol 50(2):304–311PubMedCrossRefGoogle Scholar
  35. 35.
    Majesky MW, Dong XR, Regan JN, Hoglund VJ (2011) Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 108(3):365–377PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105(7):2783–2786PubMedCrossRefGoogle Scholar
  37. 37.
    Naito H, Kidoya H, Sakimoto S, Wakabayashi T, Takakura N (2012) Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels. EMBO J 31(4):842–855PubMedCrossRefGoogle Scholar
  38. 38.
    Sainz J, Al Haj Zen A, Caligiuri G, Demerens C, Urbain D, Lemitre M, Lafont A (2006) Isolation of “side population” progenitor cells from healthy arteries of adult mice. Arterioscler Thromb Vasc Biol 26(2):281–286PubMedCrossRefGoogle Scholar
  39. 39.
    Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN (1996) Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 93(12):2178–2187PubMedCrossRefGoogle Scholar
  40. 40.
    Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 113(9):1258–1265PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergun S (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133(8):1543–1551PubMedCrossRefGoogle Scholar
  42. 42.
    Passman JN, Dong XR, Wu SP, Maguire CT, Hogan KA, Bautch VL, Majesky MW (2008) A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci U S A 105(27):9349–9354PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Pasquinelli G, Tazzari PL, Vaselli C, Foroni L, Buzzi M, Storci G, Alviano F, Ricci F, Bonafe M, Orrico C, Bagnara GP, Stella A, Conte R (2007) Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells 25(7):1627–1634PubMedCrossRefGoogle Scholar
  44. 44.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967PubMedCrossRefGoogle Scholar
  45. 45.
    Asahara T, Kawamoto A, Masuda H (2011) Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29(11):1650–1655PubMedCrossRefGoogle Scholar
  46. 46.
    Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7(11):1194–1201PubMedCrossRefGoogle Scholar
  47. 47.
    De Palma M, Venneri MA, Roca C, Naldini L (2003) Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 9(6):789–795PubMedCrossRefGoogle Scholar
  48. 48.
    De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226PubMedCrossRefGoogle Scholar
  49. 49.
    Gothert JR, Gustin SE, van Eekelen JA, Schmidt U, Hall MA, Jane SM, Green AR, Gottgens B, Izon DJ, Begley CG (2004) Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 104(6):1769–1777PubMedCrossRefGoogle Scholar
  50. 50.
    Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94(2):230–238PubMedCrossRefGoogle Scholar
  51. 51.
    Shinde Patil VR, Friedrich EB, Wolley AE, Gerszten RE, Allport JR, Weissleder R (2005) Bone marrow-derived lin(−)c-kit(+)Sca-1+ stem cells do not contribute to vasculogenesis in Lewis lung carcinoma. Neoplasia 7(3):234–240PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Purhonen S, Palm J, Rossi D, Kaskenpaa N, Rajantie I, Yla-Herttuala S, Alitalo K, Weissman IL, Salven P (2008) Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci U S A 105(18):6620–6625PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Okuno Y, Nakamura-Ishizu A, Kishi K, Suda T, Kubota Y (2011) Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 117(19):5264–5272PubMedCrossRefGoogle Scholar
  54. 54.
    Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL (2011) Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476(7361):409–413PubMedCrossRefGoogle Scholar
  55. 55.
    Folkman J, Haudenschild CC, Zetter BR (1979) Long-term culture of capillary endothelial cells. Proc Natl Acad Sci U S A 76(10):5217–5221PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Wu Z, Hofman FM, Zlokovic BV (2003) A simple method for isolation and characterization of mouse brain microvascular endothelial cells. J Neurosci Methods 130(1):53–63PubMedCrossRefGoogle Scholar
  57. 57.
    Ewing P, Wilke A, Brockhoff G, Andreesen R, Eissner G, Holler E, Gerbitz A (2003) Isolation and transplantation of allogeneic pulmonary endothelium derived from GFP transgenic mice. J Immunol Methods 283(1–2):307–315PubMedCrossRefGoogle Scholar
  58. 58.
    van Beijnum JR, Rousch M, Castermans K, van der Linden E, Griffioen AW (2008) Isolation of endothelial cells from fresh tissues. Nat Protoc 3(6):1085–1091PubMedCrossRefGoogle Scholar
  59. 59.
    Asakura A, Rudnicki MA (2002) Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol 30(11):1339–1345PubMedCrossRefGoogle Scholar
  60. 60.
    Jonker JW, Freeman J, Bolscher E, Musters S, Alvi AJ, Titley I, Schinkel AH, Dale TC (2005) Contribution of the ABC transporters Bcrp1 and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice. Stem Cells 23(8):1059–1065PubMedCrossRefGoogle Scholar
  61. 61.
    Pietras EM, Warr MR, Passegue E (2011) Cell cycle regulation in hematopoietic stem cells. J Cell Biol 195(5):709–720PubMedCrossRefGoogle Scholar
  62. 62.
    Bruscia EM, Ziegler EC, Price JE, Weiner S, Egan ME, Krause DS (2006) Engraftment of donor-derived epithelial cells in multiple organs following bone marrow transplantation into newborn mice. Stem Cells 24(10):2299–2308PubMedCrossRefGoogle Scholar
  63. 63.
    Simons BD, Clevers H (2011) Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145(6):851–862PubMedCrossRefGoogle Scholar
  64. 64.
    McNiece IK, Stewart FM, Deacon DM, Temeles DS, Zsebo KM, Clark SC, Quesenberry PJ (1989) Detection of a human CFC with a high proliferative potential. Blood 74(2):609–612PubMedGoogle Scholar
  65. 65.
    Takakura N, Huang XL, Naruse T, Hamaguchi I, Dumont DJ, Yancopoulos GD, Suda T (1998) Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity 9(5):677–686PubMedCrossRefGoogle Scholar
  66. 66.
    Rajagopalan S, Mohler ER III, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, Blebea J, Macko J, Kessler PD, Rasmussen HS, Annex BH (2003) Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108(16):1933–1938PubMedCrossRefGoogle Scholar
  67. 67.
    Nikol S, Baumgartner I, Van Belle E, Diehm C, Visona A, Capogrossi MC, Ferreira-Maldent N, Gallino A, Wyatt MG, Wijesinghe LD, Fusari M, Stephan D, Emmerich J, Pompilio G, Vermassen F, Pham E, Grek V, Coleman M, Meyer F (2008) Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther 16(5):972–978PubMedCrossRefGoogle Scholar
  68. 68.
    Powell RJ, Simons M, Mendelsohn FO, Daniel G, Henry TD, Koga M, Morishita R, Annex BH (2008) Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 118(1):58–65PubMedCrossRefGoogle Scholar
  69. 69.
    Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360(9331):427–435PubMedCrossRefGoogle Scholar
  70. 70.
    Minamino T, Toko H, Tateno K, Nagai T, Komuro I (2002) Peripheral-blood or bone-marrow mononuclear cells for therapeutic angiogenesis? Lancet 360(9350):2083–2084PubMedCrossRefGoogle Scholar
  71. 71.
    Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974PubMedCrossRefGoogle Scholar
  72. 72.
    Kim JY, Song SH, Kim KL, Ko JJ, Im JE, Yie SW, Ahn YK, Kim DK, Suh W (2010) Human cord blood-derived endothelial progenitor cells and their conditioned media exhibit therapeutic equivalence for diabetic wound healing. Cell Transplant 19(12):1635–1644PubMedCrossRefGoogle Scholar
  73. 73.
    Yamada Y, Takakura N (2006) Physiological pathway of differentiation of hematopoietic stem cell population into mural cells. J Exp Med 203(4):1055–1065PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Biteau B, Hochmuth CE, Jasper H (2011) Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. Cell Stem Cell 9(5):402–411PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400PubMedCrossRefGoogle Scholar
  76. 76.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177PubMedCrossRefGoogle Scholar
  78. 78.
    Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B, Tian YM, Lanahan AA, Pollard P, Ruiz de Almodovar C, De Smet F, Vinckier S, Aragones J, Debackere K, Luttun A, Wyns S, Jordan B, Pisacane A, Gallez B, Lampugnani MG, Dejana E, Simons M, Ratcliffe P, Maxwell P, Carmeliet P (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851PubMedCrossRefGoogle Scholar
  79. 79.
    Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887PubMedCrossRefGoogle Scholar
  80. 80.
    Chappell JC, Taylor SM, Ferrara N, Bautch VL (2009) Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev Cell 17(3):377–386PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Signal Transduction, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
  2. 2.JST, CRESTTokyoJapan

Personalised recommendations