Endothelium in Pathologic Angiogenesis and Angiogenesis-Mediated Therapies

  • Maria Paprocka
  • Catherine Grillon
  • Danuta Duś
  • Claudine KiedaEmail author


This chapter describes a short historical overview of the progress in endothelium research and point the importance of organ-selective characteristics according to the present knowledge about endothelium biology. Uncovering the advantages that the endothelial cell properties and characteristics provide for the development of future targeted therapies, the review describes why mature endothelial cells due to their organ-specificity can be useful to target diseased organs.

In the same line, endothelium properties will be exploited to make the endothelial cells a disease marker, e.g., in diabetes, stroke, cancer, inflammation, or ischemia and to provide a potential diagnostic indicator for the estimation of metastatic progression. New perspectives are thus opened by endothelial cells that can be considered both as a reporter and a target. These features can be combined with new cell-mediated and cell-targeted therapeutics designed to correct angiogenesis. Examples of such possible applications are detailed in the repair of tumor angiogenesis with help of endothelial cell precursors through their ability to target the pathologic angiogenesis and participate to normalization of the pathologic vasculature. The hypothesis that normalized angiogenesis may provide an efficient treatment, working as adjuvant to classical therapies, is being developed. The objective is to reach a mechanical stabilization that should result in an advantageous change of the tumor microenvironment.


Tumor Chemokines Down syndrome VEGF Glycosaminoglycans Circulating endothelial cells Endothelial progenitor cells 



This work was supported by the Ligue Nationale contre le Cancer, Fondation Jérôme Lejeune, the Institut National du Cancer (grant N° 347/N-INCA/2008/0), the French National Research Agency (ANR 3Sens), and by Normoxys Inc. and the CG45.


  1. 1.
    Hwa C, Aird WC (2007) The history of the capillary wall: doctors, discoveries, and debates. Am J Physiol Heart Circ Physiol 293:H2667–H2679PubMedCrossRefGoogle Scholar
  2. 2.
    Berrich M, Kieda C, Grillon C et al (2011) Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells. PLoS One 6:e20204PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Auerbach R (1991) Vascular endothelial cell differentiation: organ-specificity and selective affinities as the basis for developing anti-cancer strategies. Int J Radiat Biol 60:1–10PubMedCrossRefGoogle Scholar
  4. 4.
    Kieda C, Paprocka M, Krawczenko A et al (2002) New human microvascular endothelial cell lines with specific adhesion molecules phenotypes. Endothelium 9:247–261PubMedCrossRefGoogle Scholar
  5. 5.
    Ribatti D, Nico B, Vacca A et al (2002) Endothelial cell heterogeneity and organ specificity. J Hematother Stem Cell Res 11:81–90PubMedCrossRefGoogle Scholar
  6. 6.
    Butcher EC, Scollay RG, Weissman IL (1980) Organ specificity of lymphocyte migration: mediation by highly selective lymphocyte interaction with organ-specific determinants on high endothelial venules. Eur J Immunol 10:556–561PubMedCrossRefGoogle Scholar
  7. 7.
    Kieda CM, Bowles DJ, Ravid A et al (1978) Lectins in lymphocyte membranes. FEBS Lett 94:391–396PubMedCrossRefGoogle Scholar
  8. 8.
    Grosse E, Kieda C, Nicolau C (1984) Flow cytofluorometric investigation of the uptake by hepatocytes and spleen cells of targeted and untargeted liposomes injected intravenously into mice. Biochim Biophys Acta 805:354–361PubMedCrossRefGoogle Scholar
  9. 9.
    Kieda C, Monsigny M (1986) Involvement of membrane sugar receptors and membrane glycoconjugates in the adhesion of 3LL cell subpopulations to cultured pulmonary cells. Invasion Metastasis 6:347–366PubMedGoogle Scholar
  10. 10.
    Kieda C, Roche AC, Delmotte F et al (1979) Lymphocyte membrane lectins. Direct visualization by the use of fluoresceinyl-glycosylated cytochemical markers. FEBS Lett 99:329–332PubMedCrossRefGoogle Scholar
  11. 11.
    Monsigny M, Roche AC, Kieda C et al (1988) Characterization and biological implications of membrane lectins in tumor, lymphoid and myeloid cells. Biochimie 70:1633–1649PubMedCrossRefGoogle Scholar
  12. 12.
    Stamper HB Jr, Woodruff JJ (1976) Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J Exp Med 144:828–833PubMedCrossRefGoogle Scholar
  13. 13.
    Bizouarne N, Denis V, Legrand A et al (1993) A SV-40 immortalized murine endothelial cell line from peripheral lymph node high endothelium expresses a new alpha-L-fucose binding protein. Biol Cell 79:209–218PubMedCrossRefGoogle Scholar
  14. 14.
    Bizouarne N, Mitterrand M, Monsigny M et al (1993) Characterization of membrane sugar-specific receptors in cultured high endothelial cells from mouse peripheral lymph nodes. Biol Cell 79:27–35PubMedCrossRefGoogle Scholar
  15. 15.
    Denis V, Dupuis P, Bizouarne N et al (1996) Selective induction of peripheral and mucosal endothelial cell addressins with peripheral lymph nodes and Peyer’s patch cell-conditioned media. J Leukoc Biol 60:744–752PubMedGoogle Scholar
  16. 16.
    Salmi M, Jalkanen S (1999) Molecules controlling lymphocyte migration to the gut. Gut 45:148–153PubMedCrossRefGoogle Scholar
  17. 17.
    Crola Da Silva C, Lamerant-Fayel N, Paprocka M et al (2009) Selective human endothelial cell activation by chemokines as a guide to cell homing. Immunology 126:394–404PubMedCrossRefGoogle Scholar
  18. 18.
    Lamerant N, Kieda C (2005) Adhesion properties of adhesion-regulating molecule 1 protein on endothelial cells. FEBS J 272:1833–1844PubMedCrossRefGoogle Scholar
  19. 19.
    Lewandowicz-Uszynska A, Paprocka M, Kieda C et al (2004) Efficiency of lymphocytes adhesion to endothelial cells of distinct tissue origin from children with asthma. Pol Merkur Lekarski 16:104–107PubMedGoogle Scholar
  20. 20.
    Harashima C, Jacobowitz DM, Stoffel M et al (2006) Elevated expression of the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) in cerebellar unipolar brush cells of a Down syndrome mouse model. Cell Mol Neurobiol 26:719–734PubMedCrossRefGoogle Scholar
  21. 21.
    Carreau A, El Hafny-Rahbi B, Matejuk A et al (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15:1239–1253PubMedCrossRefGoogle Scholar
  22. 22.
    Camoin-Jau L, Kone-Paut I, Chabrol B et al (2000) Circulating endothelial cells in Behcet’s disease with cerebral thrombophlebitis. Thromb Haemost 83:631–632PubMedGoogle Scholar
  23. 23.
    Dignat-George F, Sampol J (2000) Circulating endothelial cells in vascular disorders: new insights into an old concept. Eur J Haematol 65:215–220PubMedCrossRefGoogle Scholar
  24. 24.
    Blann AD, Woywodt A, Bertolini F et al (2005) Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost 93:228–235PubMedGoogle Scholar
  25. 25.
    Chouaib S, Kieda C, Benlalam H et al (2010) Endothelial cells as key determinants of the tumor microenvironment: interaction with tumor cells, extracellular matrix and immune killer cells. Crit Rev Immunol 30:529–545PubMedCrossRefGoogle Scholar
  26. 26.
    Opolski A, Wietrzyk J, Dus D et al (1998) Metastatic potential and saccharide antigens expression of human colon cancer cells xenotransplanted into athymic nude mice. Folia Microbiol (Praha) 43:507–510CrossRefGoogle Scholar
  27. 27.
    Szczepanek K, Kieda C, Cichy J (2008) Differential binding of hyaluronan on the surface of tissue-specific endothelial cell lines. Acta Biochim Pol 55:35–42PubMedGoogle Scholar
  28. 28.
    Sceneay J, Smyth MJ, Moller A (2013) The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 32:449–464Google Scholar
  29. 29.
    Kieda C, El Hafny-Rahbi B, Collet G et al (2013) Stable tumor vessel normalization with pO increase and endothelial PTEN activation by inositol trispyrophosphate brings novel tumor treatment. J Mol Med (Berl) 91:883–899CrossRefGoogle Scholar
  30. 30.
    Mancuso P, Calleri A, Bertolini F (2012) Circulating endothelial cells and circulating endothelial progenitors. Recent Results Cancer Res 195:163–170PubMedCrossRefGoogle Scholar
  31. 31.
    Li CX, Shao Y, Ng KT et al (2012) FTY720 suppresses liver tumor metastasis by reducing the population of circulating endothelial progenitor cells. PLoS One 7:e32380PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Singh N, Van Craeyveld E, Tjwa M et al (2012) Circulating apoptotic endothelial cells and apoptotic endothelial microparticles independently predict the presence of cardiac allograft vasculopathy. J Am Coll Cardiol 60:324–331PubMedCrossRefGoogle Scholar
  33. 33.
    Biguzzi E, Mancuso P, Franchi F et al (2009) Circulating endothelial cells (CECs) and progenitors (CEPs) in severe haemophiliacs with different clinical phenotype. Br J Haematol 144:803–805PubMedCrossRefGoogle Scholar
  34. 34.
    Mancuso P, Bertolini F (2010) Circulating endothelial cells as biomarkers in clinical oncology. Microvasc Res 79:224–228PubMedCrossRefGoogle Scholar
  35. 35.
    Lombardo MF, Iacopino P, Cuzzola M et al (2012) Type 2 diabetes mellitus impairs the maturation of endothelial progenitor cells and increases the number of circulating endothelial cells in peripheral blood. Cytometry A 81:856–864PubMedCrossRefGoogle Scholar
  36. 36.
    Palombo C, Kozakova M, Morizzo C et al (2011) Circulating endothelial progenitor cells and large artery structure and function in young subjects with uncomplicated type 1 diabetes. Cardiovasc Diabetol 10:88PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Sun CK, Leu S, Sheu JJ et al (2013) Paradoxical impairment of angiogenesis, endothelial function and circulating number of endothelial progenitor cells in DPP4-deficient rat after critical limb ischemia. Stem Cell Res Ther 4:31PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Lavergne M, Vanneaux V, Delmau C et al (2011) Cord blood-circulating endothelial progenitors for treatment of vascular diseases. Cell Prolif 44(Suppl 1):44–47PubMedCrossRefGoogle Scholar
  39. 39.
    Paprocka M, Krawczenko A, Dus D et al (2011) CD133 positive progenitor endothelial cell lines from human cord blood. Cytometry A 79:594–602PubMedCrossRefGoogle Scholar
  40. 40.
    De Bock K, Cauwenberghs S, Carmeliet P (2011) Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev 21:73–79PubMedCrossRefGoogle Scholar
  41. 41.
    Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427PubMedCrossRefGoogle Scholar
  42. 42.
    Bielawska-Pohl A, Crola C, Caignard A et al (2005) Human NK cells lyse organ-specific endothelial cells: analysis of adhesion and cytotoxic mechanisms. J Immunol 174:5573–5582PubMedGoogle Scholar
  43. 43.
    Bielawska-Pohl A, Blesson S, Benlalam H et al (2010) The anti-angiogenic activity of IL-12 is increased in iNOS−/− mice and involves NK cells. J Mol Med 88:775–784PubMedCrossRefGoogle Scholar
  44. 44.
    Benlalam H, Jalil A, Hasmim M et al (2009) Gap junction communication between autologous endothelial and tumor cells induce cross-recognition and elimination by specific CTL. J Immunol 182:2654–2664PubMedCrossRefGoogle Scholar
  45. 45.
    Carreau A, Kieda C, Grillon C (2011) Nitric oxide modulates the expression of endothelial cell adhesion molecules involved in angiogenesis and leukocyte recruitment. Exp Cell Res 317:29–41PubMedCrossRefGoogle Scholar
  46. 46.
    De Bock K, Mazzone M, Carmeliet P (2011) Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nature reviews. Clin Oncol 8:393–404Google Scholar
  47. 47.
    Kieran MW, Folkman J, Heymach J (2003) Angiogenesis inhibitors and hypoxia. Nat Med 9:1104, author reply 1104–1105PubMedCrossRefGoogle Scholar
  48. 48.
    Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74:72–84PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Goel S, Duda DG, Xu L et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Collet G, Skrzypek K, Grillon C et al (2012) Hypoxia control to normalize pathologic angiogenesis: potential role for endothelial precursor cells and miRNAs regulation. Vascul Pharmacol 56:252–261PubMedCrossRefGoogle Scholar
  51. 51.
    Matejuk A, Collet G, Nadim M et al (2013) MicroRNAs and tumor vasculature normalization: impact on anti-tumor immune response. Arch Immunol Ther Exp (Warsz) 61:285–299CrossRefGoogle Scholar
  52. 52.
    Semenza GL (2002) Involvement of hypoxia-inducible factor 1 in human cancer. Int Med 41:79–83CrossRefGoogle Scholar
  53. 53.
    Medina RA, Owen GI (2002) Glucose transporters: expression, regulation and cancer. Biol Res 35:9–26PubMedCrossRefGoogle Scholar
  54. 54.
    Loncaster JA, Harris AL, Davidson SE et al (2001) Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 61:6394–6399PubMedGoogle Scholar
  55. 55.
    Hui EP, Sung FL, Yu BK et al (2008) Plasma osteopontin, hypoxia, and response to radiotherapy in nasopharyngeal cancer. Clin Cancer Res 14:7080–7087PubMedCrossRefGoogle Scholar
  56. 56.
    Erler JT, Bennewith KL, Nicolau M et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226PubMedCrossRefGoogle Scholar
  57. 57.
    Vaupel P, Hockel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235PubMedCrossRefGoogle Scholar
  58. 58.
    Griffiths JR, Robinson SP (1999) The OxyLite: a fibre-optic oxygen sensor. Br J Radiol 72:627–630PubMedGoogle Scholar
  59. 59.
    Gallez B, Baudelet C, Jordan BF (2004) Assessment of tumor oxygenation by electron paramagnetic resonance: principles and applications. NMR Biomed 17:240–262PubMedCrossRefGoogle Scholar
  60. 60.
    Lee CP, Payne GS, Oregioni A et al (2009) A phase I study of the nitroimidazole hypoxia marker SR4554 using 19F magnetic resonance spectroscopy. Br J Cancer 101:1860–1868PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Di Martino EF, Gagel B, Schramm O et al (2005) Evaluation of tumor oxygenation by color duplex sonography: a new approach. Otolaryngol Head Neck Surg 132:765–769PubMedCrossRefGoogle Scholar
  62. 62.
    Taylor NJ, Baddeley H, Goodchild KA et al (2001) BOLD MRI of human tumor oxygenation during carbogen breathing. J Magn Reson Imaging 14:156–163PubMedCrossRefGoogle Scholar
  63. 63.
    Raleigh JA, Chou SC, Arteel GE et al (1999) Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 151:580–589PubMedCrossRefGoogle Scholar
  64. 64.
    Rasey JS, Grunbaum Z, Magee S et al (1987) Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 111:292–304PubMedCrossRefGoogle Scholar
  65. 65.
    Kumar P, Ohkura K, Beiki D et al (2003) Synthesis of 1-beta-D-(5-deoxy-5-iodoarabinofuranosyl)-2-nitroimidazole (beta-IAZA): a novel marker of tissue hypoxia. Chem Pharm Bull 51:399–403PubMedCrossRefGoogle Scholar
  66. 66.
    Bowen SR, Van Der Kogel AJ, Nordsmark M et al (2011) Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling. Nucl Med Biol 38:771–780PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Chao KS, Bosch WR, Mutic S et al (2001) A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49:1171–1182PubMedCrossRefGoogle Scholar
  68. 68.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62PubMedCrossRefGoogle Scholar
  69. 69.
    Facciabene A, Peng X, Hagemann IS et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475:226–230PubMedCrossRefGoogle Scholar
  70. 70.
    Qayum N, Muschel RJ, Im JH et al (2009) Tumor vascular changes mediated by inhibition of oncogenic signaling. Cancer Res 69:6347–6354PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Sato Y (2012) The vasohibin family: novel regulators of angiogenesis. Vascul Pharmacol 56:262–266PubMedCrossRefGoogle Scholar
  72. 72.
    Skrzypek K, Tertil M, Golda S et al (2013) Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization and metastasis. Antioxid Redox Signal 19:644–660PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Maria Paprocka
    • 1
  • Catherine Grillon
    • 2
  • Danuta Duś
    • 1
  • Claudine Kieda
    • 2
    Email author
  1. 1.Ludwik Hirszfeld Institute of Immunology, and Experimental TherapyWrocławPoland
  2. 2.Centre for Molecular BiophysicsOrléansFrance

Personalised recommendations