Advertisement

Hypoxia-Induced Pathological Angiogenesis in Zebrafish

  • Lasse D. JensenEmail author
  • Pegah Rouhi
  • Yihai CaoEmail author
Chapter

Abstract

Deregulated angiogenesis is a major underlying cause of many severe diseases including cancer, retinopathy, diabetes, myocardial infarction, and stroke. In these diseases, tissue hypoxia is the main cause of the pathological vascular phenotypes. While the mechanisms behind hypoxia-induced changes in cellular signaling have been extensively studied in vitro, much less is known regarding the effects of hypoxia in physiological or pathological settings in vivo. The highly hypoxia-tolerant zebrafish and glass catfish provide excellent systems for studying the effects of hypoxia on angiogenesis and vascular pathology in vertebrate disease models. Here we present and discuss the benefits and drawbacks in using zebrafish to study basic mechanisms of hypoxia in disease, with special emphasis on the role of angiogenesis and vascular function. Specifically, we will in detail discuss zebrafish models of hypoxia-induced angiogenesis in the retina and tumor, as well as acute hypoxia models using glass catfish, and discuss the usefulness of these models to elucidate key mechanisms behind pathological vascular disruption in retinopathy and cancer. At the end of the chapter we contextualize the hypoxia-induced angiogenesis-mediated zebrafish disease models and discuss the perspectives in using zebrafish for medical research on hypoxia and angiogenesis.

Keywords

Angiogenesis Zebrafish Hypoxia Vasculature Cancer Retinopathy 

References

  1. 1.
    Jensen LD, Rouhi P, Cao Z, Lanne T, Wahlberg E, Cao Y (2011) Zebrafish models to study hypoxia-induced pathological angiogenesis in malignant and nonmalignant diseases. Birth Defects Res Part C Embryo Today 93:182–193CrossRefGoogle Scholar
  2. 2.
    Rouhi P, Jensen LD, Cao Z, Hosaka K, Lanne T, Wahlberg E, Steffensen JF, Cao Y (2010) Hypoxia-induced metastasis model in embryonic zebrafish. Nat Protoc 5:1911–1918PubMedCrossRefGoogle Scholar
  3. 3.
    Cao Z, Jensen LD, Rouhi P, Hosaka K, Lanne T, Steffensen JF, Wahlberg E, Cao Y (2010) Hypoxia-induced retinopathy model in adult zebrafish. Nat Protoc 5:1903–1910PubMedCrossRefGoogle Scholar
  4. 4.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefGoogle Scholar
  5. 5.
    Ferrara N (2010) Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat Med 16:1107–1111PubMedCrossRefGoogle Scholar
  6. 6.
    Cao R, Jensen LD, Soll I, Hauptmann G, Cao Y (2008) Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy. PLoS One 3:e2748PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Lee SL, Rouhi P, Dahl Jensen L, Zhang D, Ji H, Hauptmann G, Ingham P, Cao Y (2009) Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci USA 106:19485–19490PubMedCrossRefGoogle Scholar
  8. 8.
    Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554PubMedCrossRefGoogle Scholar
  9. 9.
    Cao Y (2011) Antiangiogenic cancer therapy: why do mouse and human patients respond in a different way to the same drug? Int J Dev Biol 55:557–562PubMedCrossRefGoogle Scholar
  10. 10.
    Folk JC, Stone EM (2010) Ranibizumab therapy for neovascular age-related macular degeneration. N Engl J Med 363:1648–1655PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang D, Hedlund EM, Lim S, Chen F, Zhang Y, Sun B, Cao Y (2011) Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity. Proc Natl Acad Sci USA 108:4117–4122PubMedCrossRefGoogle Scholar
  12. 12.
    Kamba T, McDonald DM (2007) Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 96:1788–1795PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Jensen LD, Cao Y (2013) Clock controls angiogenesis. Cell Cycle 12:405–408PubMedCrossRefGoogle Scholar
  15. 15.
    Jensen LD, Cao Z, Nakamura M, Yang Y, Brautigam L, Andersson P, Zhang Y, Wahlberg E, Lanne T, Hosaka K, Cao Y (2012) Opposing effects of circadian clock genes bmal1 and period2 in regulation of VEGF-dependent angiogenesis in developing zebrafish. Cell Rep 2:231–241PubMedCrossRefGoogle Scholar
  16. 16.
    Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND (2010) MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464:1196–1200PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Bailey KM, Wojtkowiak JW, Hashim AI, Gillies RJ (2012) Targeting the metabolic microenvironment of tumors. Adv Pharmacol 65:63–107PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–472PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Dang CV (2012) Links between metabolism and cancer. Genes Dev 26:877–890PubMedCrossRefGoogle Scholar
  21. 21.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–314PubMedCrossRefGoogle Scholar
  22. 22.
    Peterson RT, Shaw SY, Peterson TA, Milan DJ, Zhong TP, Schreiber SL, MacRae CA, Fishman MC (2004) Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 22:595–599PubMedCrossRefGoogle Scholar
  23. 23.
    Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366:1227–1239PubMedCrossRefGoogle Scholar
  24. 24.
    Chen J, Smith LE (2007) Retinopathy of prematurity. Angiogenesis 10:133–140PubMedCrossRefGoogle Scholar
  25. 25.
    Dahl Ejby Jensen L, Cao R, Hedlund EM, Soll I, Lundberg JO, Hauptmann G, Steffensen JF, Cao Y (2009) Nitric oxide permits hypoxia-induced lymphatic perfusion by controlling arterial-lymphatic conduits in zebrafish and glass catfish. Proc Natl Acad Sci USA 106:18408–18413PubMedCrossRefGoogle Scholar
  26. 26.
    Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12:711–716PubMedCrossRefGoogle Scholar
  27. 27.
    Kuchler AM, Gjini E, Peterson-Maduro J, Cancilla B, Wolburg H, Schulte-Merker S (2006) Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol 16:1244–1248PubMedCrossRefGoogle Scholar
  28. 28.
    Rasmussen KJ, Steffensen JF, Buchmann K (2013) Differential occurrence of immune cells in the primary and secondary vascular systems in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 36:675–679PubMedCrossRefGoogle Scholar
  29. 29.
    Robichaux JL, Tanno E, Rappleye JW, Ceballos M, Stallcup WB, Schmid-Schonbein GW, Murfee WL (2010) Lymphatic/Blood endothelial cell connections at the capillary level in adult rat mesentery. Anat Rec (Hoboken) 293:1629–1638CrossRefGoogle Scholar
  30. 30.
    Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC, Duckers HJ, Schulte-Merker S (2009) Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet 41:396–398PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
  2. 2.Department of Medicine and Health SciencesLinköping UniversityLinköpingSweden

Personalised recommendations