Skip to main content

Cancer Vaccines and the Potential Benefit of Combination with Standard Cancer Therapies

  • Chapter
  • First Online:
  • 1164 Accesses

Abstract

Numerous different kinds of cancer vaccines are in development, comprising a broad spectrum of different antigenic targets and formulations. Although many cancer vaccination trials have been conducted through the last decades, clinical benefit for the majority of patients still needs to be confirmed. An obstacle to successive immunotherapy might be immunosuppressive mechanisms such as regulatory T cells and myeloid-derived suppressor cells.

The use of chemotherapy in combination with immunotherapy has been controversial due to the immunosuppressive effects of the chemotherapeutic agents. During the last decade, data have accumulated that point to possible advantages of combining these two treatments. To this end, some chemotherapeutic drugs lead to an immunogenic death of cancer cells and selective depletion of immunoregulatory cell subsets.

The combination of immunotherapy and standard chemotherapy regimens or low-dose chemotherapy aiming at improved response to immunotherapy is under investigation in numerous laboratories and clinics, and the results look promising so far.

The cancer vaccine approach might also benefit from combination with other kinds of cancer therapeutics such as targeted therapies and immune-modifying antibodies.

Selected studies are reviewed to address present knowledge on combining cancer vaccines and existing cancer therapies. Also future perspectives are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Higano, C.S., et al.: Sipuleucel-T. Nat. Rev. Drug Discov. 9, 513–514 (2010)

    Article  PubMed  CAS  Google Scholar 

  2. Schreiber, R.D., Old, L.J., Smyth, M.J.: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011)

    Article  PubMed  CAS  Google Scholar 

  3. Zou, W.: Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 6, 295–307 (2006)

    Article  PubMed  CAS  Google Scholar 

  4. Srivastava, M.K., et al.: Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 70, 68–77 (2010)

    Article  PubMed  CAS  Google Scholar 

  5. Munn, D.H., Mellor, A.L.: Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 117, 1147–1154 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. Andersen, M.H.: The specific targeting of immune regulation: T-cell responses against indoleamine 2,3-dioxygenase. Cancer Immunol. Immunother. 61, 1289–1297 (2012), 1–9

    Article  PubMed  CAS  Google Scholar 

  7. Emens, L.A.: Chemoimmunotherapy. Cancer J. 16, 295–303 (2010)

    Article  PubMed  CAS  Google Scholar 

  8. Sistigu, A., et al.: Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin. Immunopathol. 33, 369–383 (2011)

    Article  PubMed  CAS  Google Scholar 

  9. Zitvogel, L., et al.: Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin. Cancer Res. 16, 3100–3104 (2010)

    Article  PubMed  CAS  Google Scholar 

  10. Aymeric, L., et al.: Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res. 70, 855–858 (2010)

    Article  PubMed  CAS  Google Scholar 

  11. Ramakrishnan, R., et al.: Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest. 120, 1111–1124 (2010)

    Article  PubMed  CAS  Google Scholar 

  12. Liu, J.Y., et al.: Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol. Immunother. 56, 1597–1604 (2007)

    Article  PubMed  CAS  Google Scholar 

  13. Lutsiak, M.E., et al.: Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105, 2862–2868 (2005)

    Article  PubMed  CAS  Google Scholar 

  14. Ge, Y., et al.: Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol. Immunother. 61, 353–362 (2012)

    Article  PubMed  CAS  Google Scholar 

  15. Emens, L.A., et al.: Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J. Clin. Oncol. 27, 5911–5918 (2009)

    Article  PubMed  CAS  Google Scholar 

  16. Holtl, L., et al.: Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide. Cancer Immunol. Immunother. 54, 663–670 (2005)

    Article  PubMed  Google Scholar 

  17. Ghiringhelli, F., et al.: Metronomic cyclophosphamide regimen selectively depletes CD4 + CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007)

    Article  PubMed  CAS  Google Scholar 

  18. Ellebaek, E., et al.: Metastatic melanoma patients treated with dendritic cell vaccination, interleukin-2 and metronomic cyclophosphamide: results from a phase II trial. Cancer Immunol. Immunother. 61, 1791–1804 (2012)

    Article  PubMed  CAS  Google Scholar 

  19. Engell-Noerregaard, L., et al.: Influence of metronomic cyclophosphamide or interleukin-2 alone or combined on blood regulatory T cells in patients with advanced malignant melanoma treated with dendritic cell vaccines. J. Clin. Cell. Immunol 3, 1 (2012)

    Google Scholar 

  20. Kyte, J.A., et al.: Telomerase peptide vaccination combined with temozolomide: a clinical trial in stage IV melanoma patients. Clin. Cancer Res. 17, 4568–4580 (2011)

    Article  PubMed  CAS  Google Scholar 

  21. Harrop, R., et al.: Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate with disease control: a phase I/II trial. Clin. Cancer Res. 12, 3416–3424 (2006)

    Article  PubMed  CAS  Google Scholar 

  22. Harrop, R., et al.: Vaccination of colorectal cancer patients with modified vaccinia ankara encoding the tumor antigen 5T4 (TroVax) given alongside chemotherapy induces potent immune responses. Clin. Cancer Res. 13, 4487–4494 (2007)

    Article  PubMed  CAS  Google Scholar 

  23. Harrop, R., et al.: Vaccination of colorectal cancer patients with TroVax given alongside chemotherapy (5-fluorouracil, leukovorin and irinotecan) is safe and induces potent immune responses. Cancer Immunol. Immunother. 57, 977–986 (2008)

    Article  PubMed  CAS  Google Scholar 

  24. Nistico, P., et al.: Chemotherapy enhances vaccine-induced antitumor immunity in melanoma patients. Int. J. Cancer 124, 130–139 (2009)

    Article  PubMed  CAS  Google Scholar 

  25. Quoix, E., et al.: Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: a controlled phase 2B trial. Lancet Oncol. 12, 1125–1133 (2011)

    Article  PubMed  CAS  Google Scholar 

  26. Obeid, M., et al.: Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. Chakraborty, M., et al.: External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res. 64, 4328–4337 (2004)

    Article  PubMed  CAS  Google Scholar 

  28. Formenti, S.C., Demaria, S.: Systemic effects of local radiotherapy. Lancet Oncol. 10, 718–726 (2009)

    Article  PubMed  Google Scholar 

  29. Butts, C., et al.: Updated survival analysis in patients with stage IIIB or IV non-small-cell lung cancer receiving BLP25 liposome vaccine (L-BLP25): phase IIB randomized, multicenter, open-label trial. J. Cancer Res. Clin. Oncol. 137, 1337–1342 (2011)

    Article  PubMed  CAS  Google Scholar 

  30. Gulley, J.L., et al.: Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin. Cancer Res. 11, 3353–3362 (2005)

    Article  PubMed  CAS  Google Scholar 

  31. Masucci, G., et al.: Stereotactic Ablative Radio Therapy (SABR) followed by immunotherapy a challenge for individualized treatment of metastatic solid tumours. J. Transl. Med. 10, 104 (2012)

    Article  PubMed  Google Scholar 

  32. Coppin, C., et al.: Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int. 108, 1556–1563 (2011)

    Article  PubMed  CAS  Google Scholar 

  33. Escudier, B., Kataja, V.: Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 21(Suppl 5), v137–v139 (2010)

    Article  PubMed  Google Scholar 

  34. Bhatia, S., Thompson, J.A.: Systemic therapy for metastatic melanoma in 2012: dawn of a new era. J. Natl. Compr. Canc. Netw. 10, 403–412 (2012)

    PubMed  CAS  Google Scholar 

  35. Blank, C.U., Hooijkaas, A.I., Haanen, J.B., Schumacher, T.N.: Combination of targeted therapy and immunotherapy in melanoma. Cancer Immunol. Immunother. 60, 1359–1371 (2011)

    Article  PubMed  Google Scholar 

  36. Comin-Anduix, B., et al.: The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations. Clin. Cancer Res. 16, 6040–6048 (2010)

    Article  PubMed  CAS  Google Scholar 

  37. Hong, D.S., et al.: BRAF(V600) inhibitor GSK2118436 targeted inhibition of mutant BRAF in cancer patients does not impair overall immune competency. Clin. Cancer Res. 18, 2326–2335 (2012)

    Article  PubMed  CAS  Google Scholar 

  38. Boni, A., et al.: Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 70, 5213–5219 (2010)

    Article  PubMed  CAS  Google Scholar 

  39. Donia, M., et al.: Methods to improve adoptive T-cell therapy for melanoma: IFN-γ enhances anticancer responses of cell products for infusion. J. Invest. Dermatol. 133, 545–552 (2013)

    Article  PubMed  CAS  Google Scholar 

  40. Schwartzentruber, D.J., et al.: gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 364, 2119–2127 (2011)

    Article  PubMed  CAS  Google Scholar 

  41. Weber, J.S., et al.: Ipilimumab increases activated T cells and enhances humoral immunity in patients with advanced melanoma. J. Immunother. 35, 89–97 (2012)

    Article  PubMed  CAS  Google Scholar 

  42. Hodi, F.S., et al.: Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010)

    Article  PubMed  CAS  Google Scholar 

  43. Prieto, P.A., et al.: CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin. Cancer Res. 18, 2039–2047 (2012)

    Article  PubMed  CAS  Google Scholar 

  44. Helmbach, H., et al.: Drug-resistance in human melanoma. Int. J. Cancer. 93, 617–622 (2001)

    Article  PubMed  CAS  Google Scholar 

  45. Wendel, H.G., Lowe, S.W.: Reversing drug resistance in vivo. Cell Cycle 3, 847–849 (2004)

    Article  PubMed  CAS  Google Scholar 

  46. Rochat, B., et al.: Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation? J. Pharmacol. Exp. Ther. 296, 537–541 (2001)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge Marie Svane MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Ellebæk, E., Andersen, M.H., Svane, I.M. (2013). Cancer Vaccines and the Potential Benefit of Combination with Standard Cancer Therapies. In: Giese, M. (eds) Molecular Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1419-3_20

Download citation

Publish with us

Policies and ethics