Skip to main content

TB Vaccines: State of the Art and Progresses

  • Chapter
  • First Online:
  • 1160 Accesses

Abstract

Tuberculosis is one of the oldest human diseases, which still killing about 2 million people a year around the world. It is believed that one third of the world population is infected with the bacillus M. tuberculosis, representing a huge and worrying reservoir of the pathogen. Different factors contribute to this disturbing scenario: the only available vaccine, BGC, is inefficient; treatment is too long, causing considerable side effects, generating large non compliance rates and favouring the development of resistant strains; the diagnosis is not always accurate. Although the host-pathogen interaction and immune response against tuberculosis are intensively studied, there are still open questions on this subject. Thus, the development of new diagnostics, vaccines and therapies are extremely affected and harmed.

In this chapter, initially will be provided to the reader an overview of all these tuberculosis aspects to support the detailed discussion on the development of new vaccines. The understanding of this complex panel is extremely facilitated, through segregating vaccines thematically from the different technologies used to develop each of them, explaining the objectives and rational behind their design and presenting the most relevant results available until the time of publishing this book, highlighting those of clinical testing phase. Enclosing the chapter it will be addressed prospects for the area, discussing challenging points in tuberculosis research that directly affect the development of new vaccines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hershkovitz, I., et al.: Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS One 3, e3426 (2008)

    PubMed  Google Scholar 

  2. Gagneux, S.: Host-pathogen coevolution in human tuberculosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 850–859 (2012)

    PubMed  CAS  Google Scholar 

  3. WHO: Global tuberculosis control, p. 246. World Health Organization, Geneva (2011)

    Google Scholar 

  4. Barreira, D., Grangeiro, A.: Evaluation of tuberculosis control strategies in Brazil. Foreword. Rev. Saude Publica 41(Suppl 1), 4–8 (2007)

    PubMed  Google Scholar 

  5. Kaur, D., Guerin, M.E., Skovierová, H., Brennan, P.J., Jackson, M.: Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv. Appl. Microbiol. 69, 23–78 (2009)

    PubMed  CAS  Google Scholar 

  6. Smith, I.: Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16, 463–496 (2003)

    PubMed  CAS  Google Scholar 

  7. Kaufmann, S.H.: How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 1, 20–30 (2001)

    PubMed  CAS  Google Scholar 

  8. Dheda, K., et al.: Lung remodeling in pulmonary tuberculosis. J. Infect. Dis. 192, 1201–1209 (2005)

    PubMed  CAS  Google Scholar 

  9. Welsh, K.J., Risin, S.A., Actor, J.K., Hunter, R.L.: Immunopathology of postprimary tuberculosis: increased T-regulatory cells and DEC-205-positive foamy macrophages in cavitary lesions. Clin. Dev. Immunol. 2011, 307631 (2011)

    PubMed  Google Scholar 

  10. Dorman, S.E.: New diagnostic tests for tuberculosis: bench, bedside, and beyond. Clin. Infect. Dis. 50(Suppl 3), S173–S177 (2010)

    PubMed  Google Scholar 

  11. Steingart, K.R., et al.: Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect. Dis. 6, 570–581 (2006)

    PubMed  Google Scholar 

  12. Perrin, F.M., Lipman, M.C., McHugh, T.D., Gillespie, S.H.: Biomarkers of treatment response in clinical trials of novel antituberculosis agents. Lancet Infect. Dis. 7, 481–490 (2007)

    PubMed  Google Scholar 

  13. Centers for Disease Control and Prevention. Updated Guidelines for Using Interferon Gamma Release Assays to Detect Mycobacterium tuberculosis Infection, United States. (PDF) MMWR 2010; 59 (No.RR-5). http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5905a1.htm?s_cid=rr5905a1_e

  14. Ginsberg, A.M., Spigelman, M.: Challenges in tuberculosis drug research and development. Nat. Med. 13, 290–294 (2007)

    PubMed  CAS  Google Scholar 

  15. Parida, S.K., Kaufmann, S.H.: The quest for biomarkers in tuberculosis. Drug Discov. Today 15, 148–157 (2010)

    PubMed  CAS  Google Scholar 

  16. Jain, A., Mondal, R.: Extensively drug-resistant tuberculosis: current challenges and threats. FEMS Immunol. Med. Microbiol. 53, 145–150 (2008)

    PubMed  CAS  Google Scholar 

  17. Aagaard, C., Dietrich, J., Doherty, M., Andersen, P.: TB vaccines: current status and future perspectives. Immunol. Cell Biol. 87, 279–286 (2009)

    PubMed  CAS  Google Scholar 

  18. Silva, C.L., et al.: Immunotherapy with plasmid DNA encoding mycobacterial hsp65 in association with chemotherapy is a more rapid and efficient form of treatment for tuberculosis in mice. Gene Ther. 12, 281–287 (2005)

    PubMed  CAS  Google Scholar 

  19. Skeiky, Y.A., Sadoff, J.C.: Advances in tuberculosis vaccine strategies. Nat. Rev. Microbiol. 4, 469–476 (2006)

    PubMed  CAS  Google Scholar 

  20. Ottenhoff, T.H., Kaufmann, S.H.: Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog. 8, e1002607 (2012)

    PubMed  CAS  Google Scholar 

  21. Grode, L., et al.: Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J. Clin. Invest. 115, 2472–2479 (2005)

    PubMed  CAS  Google Scholar 

  22. Tullius, M.V., Harth, G., Maslesa-Galic, S., Dillon, B.J., Horwitz, M.A.: A Replication-Limited Recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG. Infect. Immun. 76, 5200–5214 (2008)

    PubMed  CAS  Google Scholar 

  23. Green light for clinical trial of new tuberculosis vaccine candidate. <http://ec.europa.eu/research/index.cfm?lg=en&na=na-161012&pg=newsalert&year=2012> (2012)

  24. McShane, H., et al.: Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med. 10, 1240–1244 (2004)

    PubMed  CAS  Google Scholar 

  25. Scriba, T.J., et al.: Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur. J. Immunol. 40, 279–290 (2010)

    PubMed  CAS  Google Scholar 

  26. Tameris, M.D., et al.: Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381(9871), 1021–1028 (2013)

    PubMed  CAS  Google Scholar 

  27. Hoft, D.F., et al.: A recombinant adenovirus expressing immunodominant TB antigens can significantly enhance BCG-induced human immunity. Vaccine 30, 2098–2108 (2012)

    PubMed  CAS  Google Scholar 

  28. Wang, J., et al.: Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol. 173, 6357–6365 (2004)

    PubMed  CAS  Google Scholar 

  29. Santosuosso, M., McCormick, S., Zhang, X., Zganiacz, A., Xing, Z.: Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect. Immun. 74, 4634–4643 (2006)

    PubMed  CAS  Google Scholar 

  30. Ottenhoff, T.H., et al.: First in humans: a new molecularly defined vaccine shows excellent safety and strong induction of long-lived Mycobacterium tuberculosis-specific Th1-cell like responses. Hum. Vaccin. 6, 1007–1015 (2010)

    PubMed  CAS  Google Scholar 

  31. van Dissel, J.T., et al.: Ag85B-ESAT-6 adjuvanted with IC31(R) promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine 29, 2100–2109 (2011)

    PubMed  Google Scholar 

  32. van Dissel, J.T., et al.: Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naive human volunteers. Vaccine 28, 3571–3581 (2010)

    PubMed  Google Scholar 

  33. Billeskov, R., Elvang, T.T., Andersen, P.L., Dietrich, J.: The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity. PLoS One 7, e39909 (2012)

    PubMed  CAS  Google Scholar 

  34. Von Eschen, K., et al.: The candidate tuberculosis vaccine Mtb72F/AS02A: tolerability and immunogenicity in humans. Hum. Vaccin. 5, 475–482 (2009)

    Google Scholar 

  35. Aagaard, C., et al.: A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med. 17, 189–194 (2011)

    PubMed  CAS  Google Scholar 

  36. Govender, L., et al.: Higher human CD4 T cell response to novel Mycobacterium tuberculosis latency associated antigens Rv2660 and Rv2659 in latent infection compared with tuberculosis disease. Vaccine 29, 51–57 (2010)

    PubMed  CAS  Google Scholar 

  37. Lin, P.L., et al.: The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J. Clin. Invest. 122, 303–314 (2012)

    PubMed  CAS  Google Scholar 

  38. Bertholet, S., et al.: A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant mycobacterium tuberculosis. Sci. Transl. Med. 2, 53ra74 (2010)

    PubMed  Google Scholar 

  39. Baldwin, S.L., et al.: The importance of adjuvant formulation in the development of a tuberculosis vaccine. J. Immunol. 188, 2189–2197 (2012)

    PubMed  CAS  Google Scholar 

  40. Coler, R.N., et al.: Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J. Infect. Dis. 207(8), 1242–1252 (2013)

    PubMed  CAS  Google Scholar 

  41. Cardona, P.J.: RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis (Edinb.) 86(273–289) (2006)

    Google Scholar 

  42. Waddell, R.D., et al.: Safety and immunogenicity of a five-dose series of inactivated Mycobacterium vaccae vaccination for the prevention of HIV-associated tuberculosis. Clin. Infect. Dis. 30(Suppl 3), S309–S315 (2000)

    PubMed  Google Scholar 

  43. Mayo, R.E., Stanford, J.L.: Double-blind placebo-controlled trial of Mycobacterium vaccae immunotherapy for tuberculosis in KwaZulu, South Africa, 1991–97. Trans. R. Soc. Trop. Med. Hyg. 94, 563–568 (2000)

    PubMed  CAS  Google Scholar 

  44. de Bruyn, G., Garner, P.: Mycobacterium vaccae immunotherapy for treating tuberculosis. Cochrane Database Syst Rev. (1), CD001166 (2003)

    Google Scholar 

  45. Dubensky Jr., T.W., Skoble, J., Lauer, P., Brockstedt, D.G.: Killed but metabolically active vaccines. Curr. Opin. Biotechnol. 23(6), 917–923 (2012)

    PubMed  CAS  Google Scholar 

  46. Liu, M.: DNA vaccines: a review. J. Intern. Med. 253, 402–410 (2003)

    PubMed  CAS  Google Scholar 

  47. Liu, M.A.: DNA vaccines: an historical perspective and view to the future. Immunol. Rev. 239, 62–84 (2011)

    PubMed  CAS  Google Scholar 

  48. Ingolotti, M., Kawalekar, O., Shedlock, D.J., Muthumani, K., Weiner, D.B.: DNA vaccines for targeting bacterial infections. Expert Rev. Vaccines 9, 747–763 (2010)

    PubMed  CAS  Google Scholar 

  49. Romano, M., Huygen, K.: An update on vaccines for tuberculosis - there is more to it than just waning of BCG efficacy with time. Expert Opin. Biol. Ther. 12(12), 1601–1610 (2012)

    PubMed  CAS  Google Scholar 

  50. Lowrie, D.B., Tascon, R.E., Colston, M.J., Silva, C.L.: Towards a DNA vaccine against tuberculosis. Vaccine 12, 1537–1540 (1994)

    PubMed  CAS  Google Scholar 

  51. Ulmer, J.B., et al.: Expression and immunogenicity of Mycobacterium tuberculosis antigen 85 by DNA vaccination. Vaccine 15, 792–794 (1997)

    PubMed  CAS  Google Scholar 

  52. Kamath, A.T., Feng, C.G., Macdonald, M., Briscoe, H., Britton, W.J.: Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis. Infect. Immun. 67, 1702–1707 (1999)

    PubMed  CAS  Google Scholar 

  53. Zhu, X., et al.: Functions and specificity of T cells following nucleic acid vaccination of mice against Mycobacterium tuberculosis infection. J. Immunol. 158, 5921–5926 (1997)

    PubMed  CAS  Google Scholar 

  54. Lowrie, D.B., et al.: Therapy of tuberculosis in mice by DNA vaccination. Nature 400, 269–271 (1999)

    PubMed  CAS  Google Scholar 

  55. dos Santos, S.A., et al.: A subunit vaccine based on biodegradable microspheres carrying rHsp65 protein and KLK protects BALB/c mice against tuberculosis infection. Hum. Vaccin. 6, 1047–1053 (2010)

    PubMed  Google Scholar 

  56. de Paula, L., et al.: Comparison of different delivery systems of DNA vaccination for the induction of protection against tuberculosis in mice and guinea pigs. Genet. Vaccines Ther. 5, 2 (2007)

    PubMed  Google Scholar 

  57. Lima, K.M., et al.: Single dose of a vaccine based on DNA encoding mycobacterial hsp65 protein plus TDM-loaded PLGA microspheres protects mice against a virulent strain of Mycobacterium tuberculosis. Gene Ther. 10, 678–685 (2003)

    PubMed  CAS  Google Scholar 

  58. Rosada, R.S., et al.: Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunol. 9, 38 (2008)

    PubMed  Google Scholar 

  59. Lima, K.M., et al.: Efficacy of DNA-hsp65 vaccination for tuberculosis varies with method of DNA introduction in vivo. Vaccine 22, 49–56 (2003)

    PubMed  CAS  Google Scholar 

  60. Ruberti, M., et al.: Prime-boost vaccination based on DNA and protein-loaded microspheres for tuberculosis prevention. J. Drug Target. 12, 195–203 (2004)

    PubMed  CAS  Google Scholar 

  61. Morais Fonseca, D., et al.: Experimental tuberculosis: designing a better model to test vaccines against tuberculosis. Tuberculosis (Edinb.) 90(135–142) (2010)

    Google Scholar 

  62. Zarate-Blades, C.R., et al.: Comprehensive gene expression profiling in lungs of mice infected with Mycobacterium tuberculosis following DNAhsp65 immunotherapy. J. Gene Med. 11, 66–78 (2009)

    PubMed  CAS  Google Scholar 

  63. Michaluart, P., et al.: Phase I trial of DNA-hsp65 immunotherapy for advanced squamous cell carcinoma of the head and neck. Cancer Gene Ther. 15, 676–684 (2008)

    PubMed  CAS  Google Scholar 

  64. Victora, G.D., et al.: Immune response to vaccination with DNA-hsp65 in a phase I clinical trial with head and neck cancer patients. Cancer Gene Ther. 16(7), 598–608 (2009)

    PubMed  CAS  Google Scholar 

  65. Rolland, A.: Gene medicines: the end of the beginning? Adv. Drug Deliv. Rev. 57, 669–673 (2005)

    PubMed  CAS  Google Scholar 

  66. Mintzer, M.A., Simanek, E.E.: Nonviral vectors for gene delivery. Chem. Rev. 109, 259–302 (2009)

    PubMed  CAS  Google Scholar 

  67. de la Torre, L.G., et al.: The synergy between structural stability and DNA-binding controls the antibody production in EPC/DOTAP/DOPE liposomes and DOTAP/DOPE lipoplexes. Colloids Surf. B Biointerfaces 73, 175–184 (2009)

    PubMed  Google Scholar 

  68. Xu, Y., Szoka Jr., F.C.: Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35, 5616–5623 (1996)

    PubMed  CAS  Google Scholar 

  69. Rosada, R.S., Silva, C.L., Santana, M.H., Nakaie, C.R., de la Torre, L.G.: Effectiveness, against tuberculosis, of pseudo-ternary complexes: peptide-DNA-cationic liposome. J. Colloid Interface Sci. 373, 102–109 (2012)

    PubMed  CAS  Google Scholar 

  70. Byrnes, C.K., et al.: Novel nuclear shuttle peptide to increase transfection efficiency in esophageal mucosal cells. J. Gastrointest. Surg. 6, 37–42 (2002)

    PubMed  Google Scholar 

  71. Getahun, H., Gunneberg, C., Granich, R., Nunn, P.: HIV infection-associated tuberculosis: the epidemiology and the response. Clin. Infect. Dis. 50(Suppl 3), S201–S207 (2010)

    PubMed  Google Scholar 

  72. Corbett, E.L., et al.: The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163, 1009–1021 (2003)

    PubMed  Google Scholar 

  73. Collins, K.R., Quinones-Mateu, M.E., Toossi, Z., Arts, E.J.: Impact of tuberculosis on HIV-1 replication, diversity, and disease progression. AIDS Rev. 4, 165–176 (2002)

    PubMed  Google Scholar 

  74. Pawlowski, A., Jansson, M., Skold, M., Rottenberg, M.E., Kallenius, G.: Tuberculosis and HIV co-infection. PLoS Pathog. 8, e1002464 (2012)

    PubMed  CAS  Google Scholar 

  75. Kaufmann, S.H., McMichael, A.J.: Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis. Nat. Med. 11, S33–S44 (2005)

    PubMed  CAS  Google Scholar 

  76. Curran, A., Falco, V., Pahissa, A., Ribera, E.: Management of tuberculosis in HIV-infected patients. AIDS Rev. 14, 231–246 (2012)

    PubMed  Google Scholar 

  77. de Silva, N.R., et al.: Soil-transmitted helminth infections: updating the global picture. Trends Parasitol. 19, 547–551 (2003)

    PubMed  Google Scholar 

  78. Hotez, P.J., et al.: Helminth infections: the great neglected tropical diseases. J. Clin. Invest. 118, 1311–1321 (2008)

    PubMed  CAS  Google Scholar 

  79. Actor, J.K., et al.: Helminth infection results in decreased virus-specific CD8+ cytotoxic T-cell and Th1 cytokine responses as well as delayed virus clearance. Proc. Natl. Acad. Sci. U.S.A. 90, 948–952 (1993)

    PubMed  CAS  Google Scholar 

  80. Araujo, M.I., et al.: Interleukin-12 promotes pathologic liver changes and death in mice coinfected with Schistosoma mansoni and Toxoplasma gondii. Infect. Immun. 69, 1454–1462 (2001)

    PubMed  CAS  Google Scholar 

  81. Chen, C.C., Louie, S., McCormick, B., Walker, W.A., Shi, H.N.: Concurrent infection with an intestinal helminth parasite impairs host resistance to enteric Citrobacter rodentium and enhances Citrobacter-induced colitis in mice. Infect. Immun. 73, 5468–5481 (2005)

    PubMed  CAS  Google Scholar 

  82. Elias, D., Akuffo, H., Thors, C., Pawlowski, A., Britton, S.: Low dose chronic Schistosoma mansoni infection increases susceptibility to Mycobacterium bovis BCG infection in mice. Clin. Exp. Immunol. 139, 398–404 (2005)

    PubMed  CAS  Google Scholar 

  83. Mansfield, L.S., et al.: Enhancement of disease and pathology by synergy of Trichuris suis and Campylobacter jejuni in the colon of immunologically naive Swine. Am. J. Trop. Med. Hyg. 68, 70–80 (2003)

    Google Scholar 

  84. Frantz, F.G., et al.: The immune response to toxocariasis does not modify susceptibility to Mycobacterium tuberculosis infection in BALB/c mice. Am. J. Trop. Med. Hyg. 77, 691–698 (2007)

    PubMed  CAS  Google Scholar 

  85. Elias, D., et al.: Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 23, 1326–1334 (2005)

    PubMed  CAS  Google Scholar 

  86. Elias, D., Britton, S., Aseffa, A., Engers, H., Akuffo, H.: Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 26, 3897–3902 (2008)

    PubMed  CAS  Google Scholar 

  87. Frantz, F.G., et al.: Helminth coinfection does not affect therapeutic effect of a DNA vaccine in mice harboring tuberculosis. PLoS Negl. Trop. Dis. 4, e700 (2010)

    PubMed  Google Scholar 

  88. Collins, F.M.: The immunology of tuberculosis. Am. Rev. Respir. Dis. 125, 42–49 (1982)

    PubMed  CAS  Google Scholar 

  89. Caruso, A.M., et al.: Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J. Immunol. 162, 5407–5416 (1999)

    PubMed  CAS  Google Scholar 

  90. Scanga, C.A., et al.: Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J. Exp. Med. 192, 347–358 (2000)

    PubMed  CAS  Google Scholar 

  91. Cooper, A.M., Callahan, J.E., Keen, M., Belisle, J.T., Orme, I.M.: Expression of memory immunity in the lung following re-exposure to Mycobacterium tuberculosis. Tuber. Lung Dis. 78, 67–73 (1997)

    PubMed  CAS  Google Scholar 

  92. de Jong, R., et al.: Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280, 1435–1438 (1998)

    PubMed  Google Scholar 

  93. Flynn, J.L., et al.: Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2, 561–572 (1995)

    PubMed  CAS  Google Scholar 

  94. Keane, J., et al.: Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001)

    PubMed  CAS  Google Scholar 

  95. Ulrichs, T., Kaufmann, S.H.: New insights into the function of granulomas in human tuberculosis. J. Pathol. 208, 261–269 (2006)

    PubMed  CAS  Google Scholar 

  96. Turner, O.C., Basaraba, R.J., Orme, I.M.: Immunopathogenesis of pulmonary granulomas in the guinea pig after infection with Mycobacterium tuberculosis. Infect. Immun. 71, 864–871 (2003)

    PubMed  CAS  Google Scholar 

  97. Dannenberg Jr., A.M.: Perspectives on clinical and preclinical testing of new tuberculosis vaccines. Clin. Microbiol. Rev. 23, 781–794 (2010)

    PubMed  Google Scholar 

  98. Gupta, U.D., Katoch, V.M.: Animal models of tuberculosis for vaccine development. Indian J. Med. Res. 129, 11–18 (2009)

    PubMed  CAS  Google Scholar 

  99. Behar, S.M., Dascher, C.C., Grusby, M.J., Wang, C.R., Brenner, M.B.: Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J. Exp. Med. 189, 1973–1980 (1999)

    PubMed  CAS  Google Scholar 

  100. Carding, S.R., Egan, P.J.: The importance of gamma delta T cells in the resolution of pathogen-induced inflammatory immune responses. Immunol. Rev. 173, 98–108 (2000)

    PubMed  CAS  Google Scholar 

  101. Arriaga, A.K., Orozco, E.H., Aguilar, L.D., Rook, G.A., Hernández Pando, R.: Immunological and pathological comparative analysis between experimental latent tuberculous infection and progressive pulmonary tuberculosis. Clin. Exp. Immunol. 128, 229–237 (2002)

    PubMed  CAS  Google Scholar 

  102. Basaraba, R.J.: Experimental tuberculosis: the role of comparative pathology in the discovery of improved tuberculosis treatment strategies. Tuberculosis (Edinb.) 88(Suppl 1), S35–S47 (2008)

    Google Scholar 

  103. Helke, K.L., Mankowski, J.L., Manabe, Y.C.: Animal models of cavitation in pulmonary tuberculosis. Tuberculosis (Edinb.) 86(337–348) (2006)

    Google Scholar 

  104. Sable, S.B., Goyal, D., Verma, I., Behera, D., Khuller, G.K.: Lung and blood mononuclear cell responses of tuberculosis patients to mycobacterial proteins. Eur. Respir. J. 29, 337–346 (2007)

    PubMed  CAS  Google Scholar 

  105. Ainslie, G.M., Solomon, J.A., Bateman, E.D.: Lymphocyte and lymphocyte subset numbers in blood and in bronchoalveolar lavage and pleural fluid in various forms of human pulmonary tuberculosis at presentation and during recovery. Thorax 47, 513–518 (1992)

    PubMed  CAS  Google Scholar 

  106. Wallis, R.S., et al.: Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet 375, 1920–1937 (2010)

    PubMed  CAS  Google Scholar 

  107. Jacobsen, M., Mattow, J., Repsilber, D., Kaufmann, S.H.: Novel strategies to identify biomarkers in tuberculosis. Biol. Chem. 389, 487–495 (2008)

    PubMed  CAS  Google Scholar 

  108. Glatman-Freedman, A.: The role of antibody-mediated immunity in defense against Mycobacterium tuberculosis: advances toward a novel vaccine strategy. Tuberculosis (Edinb.) 86(191–197) (2006)

    Google Scholar 

  109. Abebe, F.: Is interferon-gamma the right marker for bacille Calmette-Guérin-induced immune protection? The missing link in our understanding of tuberculosis immunology. Clin. Exp. Immunol. 169, 213–219 (2012)

    PubMed  CAS  Google Scholar 

  110. Rappuoli, R., Aderem, A.: A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 473, 463–469 (2011)

    PubMed  CAS  Google Scholar 

  111. Reddy, T.B., et al.: TB database: an integrated platform for tuberculosis research. Nucleic Acids Res. 37, D499–D508 (2009)

    PubMed  CAS  Google Scholar 

  112. Magariños, M.P., et al.: TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res. 40, D1118–D1127 (2012)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Silva Rosada PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Rosada, R.S., Rodrigues, R.F., Frantz, F.G., Arnoldi, F.G.C., de la Torre, L.G., Silva, C.L. (2013). TB Vaccines: State of the Art and Progresses. In: Giese, M. (eds) Molecular Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1419-3_13

Download citation

Publish with us

Policies and ethics