Role of T-Type Ca2+ Channels in the Development of Arrhythmias and Ischemia–Reperfusion Injury

  • Stephen W. SchafferEmail author


The T-type Ca2+ channels are both abundant in pacemaker cells and activated at low thresholds, properties important for involvement in diastolic depolarization. Although T-type Ca2+ current is tiny, bradycardia is induced by blocking the current with inhibitors or by genetic manipulation, supporting the view that the T-type Ca2+ channels play a role in the regulation of the pacemaker. Besides regulating pacemaker current, the T-type Ca2+ channels have been implicated in electrical remodeling and ischemia–reperfusion injury, events involving Ca2+ overload.


Reperfusion Injury Electrical Remodel Atrial Remodel Pacemaker Potential Diastolic Depolarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akar JG, Akar FG (2007) Regulation of ion channels and arrhythmias in the ischemic heart. J Electrocardiol 40:S37–S41PubMedCrossRefGoogle Scholar
  2. Arh M, Budihna MV (2000) Comparison of effects of nitrendipine, lacidipine and mibefradil on postischaemic myocardial damage in isolated rat hearts. Pflugers Arch 440(Suppl 5):R149–R150PubMedCrossRefGoogle Scholar
  3. Baruscotti M, Bucchi A, DiFrancesco D (2005) Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther 107:59–79PubMedCrossRefGoogle Scholar
  4. Baruscotti M, Barbuti A, Bucchi A (2010) The cardiac pacemaker current. J Mol Cell Cardiol 48:55–64PubMedCrossRefGoogle Scholar
  5. Bohn G, Moosmang S, Conrad H, Ludwig A, Hofmann F, Klugbauer N (2000) Expression of T-type and L-type Ca2+ channel mRNA in murine sinoatrial node. FEBS Lett 481(1):73–76PubMedCrossRefGoogle Scholar
  6. Brown H (1982) Electrophysiology of the sinoatrial node. Physiol Rev 62:505–530PubMedGoogle Scholar
  7. Cho H-S, Takano M, Noma A (2003) The electrophysiological properties of spontaneously beating pacemaker cells isolated from mouse sinoatrial node. J Physiol 550:169–180PubMedCentralPubMedCrossRefGoogle Scholar
  8. Coetzee WA, Opie LH (1987) Effects of components of ischaemia and metabolic inhibition on delayed after depolarizations in guinea pig papillary muscle. Circ Res 61:157–165PubMedCrossRefGoogle Scholar
  9. Curtis MJ, Walker MJA (1986) The mechanism of action of the optical enantiomers of verapamil against ischaemia-induced arrhythmias in the conscious rat. Br J Pharmacol 89:137–147PubMedCentralPubMedCrossRefGoogle Scholar
  10. Delise BP, Satin J (2000) pH modification of human T-type calcium channel gating. Biophys J 78:1895–1905CrossRefGoogle Scholar
  11. DiFrancesco D (1991) The contribution of the ‘pacemaker’ current (If) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J Physiol (Lond) 434:23–40Google Scholar
  12. DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55:455–472PubMedCrossRefGoogle Scholar
  13. DiFrancesco D (2006) Serious workings of the funny current. Prog Biophys Mol Biol 90:13–25PubMedCrossRefGoogle Scholar
  14. Dokos S, Celler B, Lovell N (1996) Ion currents underlying sinoatrial node pacemaker activity: a new single cell mathematical model. J Theor Biol 181:245–272PubMedCrossRefGoogle Scholar
  15. Fareh S, Benardeau A, Nattel S (2001) Differential efficacy of L- and T-type calcium channel blockers in preventing tachycardia-induced atrial remodeling in dogs. Cardiovasc Res 49:762–770PubMedCrossRefGoogle Scholar
  16. Farkas A, Qureshi A, Curtis MJ (1999) Inadequate ischaemia-selectivity limits the antiarrhythmic efficacy of mibefradil during regional ischaemia and reperfusion in the rat isolated perfused heart. Br J Pharmacol 128:41–50PubMedCentralPubMedCrossRefGoogle Scholar
  17. Grammer JB, Zeng X, Bosch RF, Kuhlkamp V (2001) Atrial L-type Ca2+ channel, β-adrenoceptor, and 5-hydroxytryptamine type 4 receptor mRNAs in human atrial fibrillation. Basic Res Cardiol 96:82–90PubMedCrossRefGoogle Scholar
  18. Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sinoatrial node cells. J Physiol 550:169–180Google Scholar
  19. Kato T, Iwasaki YK, Duker G, Fjellstrom O, Giordanetto F, Sundqvist M, Wallin A, Wang Q-D, Nattel S (2014) Inefficiency of a highly selective T-type calcium channel blocker in preventing atrial fibrillation related remodeling. J Cardiovasc Electrophysiol 25:531–536PubMedCrossRefGoogle Scholar
  20. Kinoshita H, Kuwahara K, Takano M, Arai Y, Kuwabara Y, Yasuno S, Nakagawa Y, Nakanishi M, Harada M, Fujiwara M, Murakami M, Ueshima K, Nakao K (2009) T-type Ca2+ channel blockade prevents sudden death in mice with heart failure. Circulation 120:743–752PubMedCrossRefGoogle Scholar
  21. Kuhar CG, Budihna MV, Pleskovic RZ (2004) Mibefradil is more effective than verapamil for restoring post-ischemic function of isolated hearts of guinea pigs with acute renal failure. Eur J Pharmacol 488:137–146CrossRefGoogle Scholar
  22. Larsen JK, Mitchell JW, Best PM (2002) Quantitative analysis of the expression and distribution of calcium channel α1 subunit mRNA in the atria and ventricles of the rat heart. J Mol Cell Cardiol 34:519–532PubMedCrossRefGoogle Scholar
  23. Lubbe WF, Podzuweit T, Opie LH (1992) Potential arrhythmogenic role of cyclic adenosine monophosphate (AMP) and cytosolic calcium overload: Implications for prophylactic effects of beta-blockers in myocardial infarction and proarrhythmic effects of phosphodiesterase inhibitors. J Am Coll Cardiol 19:1622–1633PubMedCrossRefGoogle Scholar
  24. Mangoni ME, Couette B, Marger L, Bourinet E, Striessnig J, Nargeot J (2006a) Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic current to genes. Prog Biophys Mol Biol 90:38–63PubMedCrossRefGoogle Scholar
  25. Mangoni ME, Traboulsie A, Leoni A-L, Couette B, Marger L, Quang KL, Kupfer E, Cohen-Solal A, Vilar J, Shin H-S, Escande D, Charpentier F, Nargeot J, Lory P (2006b) Bradycardia and slowing of the atrioventricular conduction in mice lacking Cav3.1/α1G T-type calcium channels. Circ Res 98:1422–1430PubMedCrossRefGoogle Scholar
  26. Marger L, Mesirca P, Alig J, Torrente A, Dubel S, Engeland B, Kanani S, Fontanaud P, Striessnig J, Shin H-S, Isbrandt D, Ehmke H, Nargeot J, Mangoni ME (2011) Function roles of Cav1.3, Cav3.1 and HCN channels in automaticity of mouse atrioventricular cells: Insights into the atrioventricular pacemaker mechanism. Channels 5:251–261PubMedCentralPubMedCrossRefGoogle Scholar
  27. Masumiya H, Shijuku T, Tanaka H, Shigenobu K (1998) Inhibition of myocardial L- and T-type Ca2+ currents by efonidipine: possible mechanism for its chronotropic effect. Eur J Pharmacol 349:351–357PubMedCrossRefGoogle Scholar
  28. Mitsuiye T, Shinagawa Y, Noma A (2000) Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells. Circ Res 87:88–91PubMedCrossRefGoogle Scholar
  29. Mocanu MM, Gadgil S, Yelolon DM, Baxster GF (1999) Mibefradil, a T-type and L-type calcium channel blocker, limits infarct size through a glibenclamide-sensitive mechanism. Cardiovasc Drugs Ther 13:115–122PubMedCrossRefGoogle Scholar
  30. Moroni A, Gorza L, Beltrame M, Gravante B, Vaccari T, Bianchi ME, Altomare C, Longhi R, Heurteaux C, Vitadello M, Malgaroli A, DiFrancesco D (2001) Hyperpolarization-activated cyclic nucleotide-gated channel 1 is a molecular determinant of the cardiac pacemaker current If. J Biol Chem 276:29233–29241PubMedCrossRefGoogle Scholar
  31. Mozaffari MS, Patel C, Schaffer SW (2006) Mechanisms underlying after load-induced exacerbation of myocardial infarct size: Role of T-type Ca2+ channel. Hypertension 47:912–919PubMedCrossRefGoogle Scholar
  32. Muller CA, Opie LH, McCarthy J, Hofmann D, Pineda CA, Peisach M (1998) Effects of mibefradil, a novel calcium channel blocking agent with T-type activity, in acute experimental myocardial ischemia: Maintenance of ventricular fibrillation threshold without inotropic compromise. J Am Coll Cardiol 32:268–274PubMedCrossRefGoogle Scholar
  33. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609PubMedCentralPubMedCrossRefGoogle Scholar
  34. Ohashi N, Mitamura H, Tanimoto K, Fukuda Y, Kinebuchi O, Kurita Y, Shiroshita-Takeshita A, Miyoshi S, Hara M, Takatsuki S, Ogawa S (2004) A comparison between calcium channel blocking drugs with different potencies for T- and L-type channels I preventing atrial electrical remodeling. J Cardiovasc Pharmacol 44:386–392PubMedCrossRefGoogle Scholar
  35. Ono K, Iijima T (2005) Pathophysiological significance of the T-type Ca2+ channels: Properties and functional roles of T-type Ca2+ channels in cardiac pacemaker. J Pharmacol Sci 99:197–204PubMedCrossRefGoogle Scholar
  36. Opie LH, Coetzee WA, Dennis SC, Thandroyen FT (1998) A potential role for calcium ions in early ischemic and reperfusion arrhythmias. Ann N Y Acad Sci 522:464–477CrossRefGoogle Scholar
  37. Pastukh V, Wu S, Ricci C, Mozafffari M, Schaffer S (2005) Reversal of hyperglycemic preconditioning by angiotensin II: role of calcium transport. Am J Physiol 288:H1965–H1975Google Scholar
  38. Pastukh V, Chen H, Wu S, Jong CJ, Alexeyev M, Schaffer SW (2010) Effect of hypernatremia on injury caused by energy deficiency: role of T-type Ca2+ channel. Am J Physiol 299:C289–C297CrossRefGoogle Scholar
  39. Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Stiessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97PubMedCrossRefGoogle Scholar
  40. Quang KL, Naud P, Qi XY, Duval F, Shi Y-F, Gillis M-A, Comtois P, Tardif J-C, Li D, Levesque PC, Dobrev D, Charpentier F, Nattel S (2011) Role of T-type calcium channel subunits in post-myocardial infarction remodelling probed with genetically engineered mice. Cardiovasc Res 91:420–428PubMedCrossRefGoogle Scholar
  41. Rosati B, Dun W, Hirose M, Boyden PA, McKinnon D (2007) Molecular basis of the T-type and L-type Ca2+ channels in canine Purkinje fibres. J Physiol 579:465–471PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sandmann S, Spormann J, Prenzel F, Shaw L, Unger T (2002) Calcium channel blockade limits transcriptional, translational and functional up-regulation of the cardiac calpain system after myocardial infarction. Eur J Pharmacol 453:99–109PubMedCrossRefGoogle Scholar
  43. Seisenberger C, Specht V, Welling A, Platzer J, Pfeifer A, Kuhbandner S, Striessnig J, Klugbauer N, Feil R, Hofmann R (2000) Functional embryonic cardiomyocytes after disruption of the L-type α1C (Cav1.2) calcium channel gene in the mouse. J Biol Chem 275:39193–39199PubMedCrossRefGoogle Scholar
  44. Tanaka H, Komikado C, Namekata I, Nakamura H, Suzuki M, Tsuneoka Y, Shigenobu K, Takahara A (2008) Species difference in the contribution of T-type calcium current to cardiac pacemaking as revealed by R(-)-efonidipine. J Pharmacol Sci 107:99–102PubMedCrossRefGoogle Scholar
  45. Verheick EE, Van Kempen MJA, Veereschild M, Lurvink J, Jongsma HJ, Bouman LN (2001) Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc Res 52:40–50CrossRefGoogle Scholar
  46. Verheijck EE, Van Ginneken ACG, Wilders R, Bouman LN (1999) Contribution of L-type Ca2+ current to electrical activity in sinoatrial nodal myocytes of rabbits. Am J Physiol 276:H1064–H1077PubMedGoogle Scholar
  47. Vinogradova TM, Zhou Y-Y, Bogadanov KY, Yang D, Kuschel M, Cheng H, Xiao R-P (2000) Sinoatrial node pacemaker activity requires Ca2+-calmodulin-dependent protein kinase II activation. Circ Res 87:760–767PubMedCrossRefGoogle Scholar
  48. Wijffels MC, Kirchhof C, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation: a study in awake chronically instrumented goats. Circulation 92:1954–1968PubMedCrossRefGoogle Scholar
  49. Yang Z, Shen W, Rottman JN, Wikswo JP, Murray KT (2005) Rapid stimulation causes electrical remodeling in cultured atrial myocytes. J Mol Cell Cardiol 38:299–308PubMedCrossRefGoogle Scholar
  50. Zara A, Robinson RB, DiFrancesco D (1996) Basal responses to the L-type Ca2+ hyperpolarization-activated currents to autonomic agonists in the rabbit sino-atrial node. J Physiol 491:347–355Google Scholar
  51. Zhang Z, Xu Y, Song H, Rodriguez J, Tuteja D, Namkung Y, Shin H-S, Chiamvimonvat N (2002) Functional roles of Cav1.3 (α1D) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ Res 90:981–987PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of South Alabama College of MedicineMobileUSA

Personalised recommendations