Regulation of T-Type Ca2+ Channels by Intercellular and Intracellular Signals

  • Ming LiEmail author
  • Songwei Wu


T-type Ca2+ channels play many important physiological functions in different tissues; this makes the channels targets for extracellular and intracellular regulation. T-type Ca2+ channels in many non-excitable cells provide an essential mechanism for Ca2+ entry at voltages near the resting membrane potential, which revises the homeostasis of the intracellular Ca2+ concentration to promote cell cycling and cell duplication. Consistent with this function, many of the extracellular signals stimulate the expression of T-type Ca2+ channels. The intracellular signaling pathways regulating the T-type Ca2+ channels are frequently observed in excitable cells. In these cases, the role of T-type Ca2+ current is to modify threshold and the shape of repetitive firing of action potentials. Therefore, intracellular signaling pathways can either up- or downregulate T-type Ca2+ channels. The regulation of the α1H isoform of the T-type Ca2+ channels is frequently located on the intracellular loop between domains II and III.


Migration Inhibitory Factor Fatty Acid Amide Hydrolase Channel Expression Intracellular Loop Neonatal Cardiac Myocytes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beam KG, Knudson CM (1988) Effect of postnatal development on calcium currents and slow charge movement in mammalian skeletal muscle. J Gen Physiol 91:799–815PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bertolesi GE, Jollimore CA, Shi C, Elbaum L, Denovan-Wright EM, Barnes S, Kelly ME (2003) Regulation of α1G T-type calcium channel gene (CACNA1G) expression during neuronal differentiation. Eur J Neurosci 17:1802–1810PubMedCrossRefGoogle Scholar
  3. Bosch DE, Siderovski DP (2013) G protein signaling in the parasite Entamoeba histolytica. Exp Mol Med 10:1–12Google Scholar
  4. Carabelli V, Marcantoni A, Comunanza V, de Luca A, Díaz J, Borges R, Carbone E (2007) Chronic hypoxia up-regulates α1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol 584:149–165PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cazade M, Bidaud I, Hansen PB, Lory P, Chemin J (2013) 5,6-EET potently inhibits T-type calcium channels: implication in the regulation of the vascular tone. Pflugers Arch. doi: 10.1007/s00424-013-1411-0
  6. Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P (2001) Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J 20:7033–7040PubMedCentralPubMedCrossRefGoogle Scholar
  7. Cohen CJ, McCarthy RT, Barrett PQ, Rasmussen H (1988) Ca channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca channel current. Proc Natl Acad Sci USA 85:2412–2416PubMedCentralPubMedCrossRefGoogle Scholar
  8. De Petrocellis L, Melck D, Palmisano A, Bisogno T, Laezza C, Bifulco M, Di Marzo V (1998) The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc Natl Acad Sci USA 95:8375–8380PubMedCentralPubMedCrossRefGoogle Scholar
  9. DePuy SD, Yao J, Hu C, McIntire W, Biduad I, Lory P, Rastinejad F, Gonzalez C, Garrison JC, Barrett PQ (2006) The molecular basis for T-type Ca2+ channel inhibition by G protein β2γ2 subunits. Proc Natl Acad Sci USA 103:14590–14595PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dey D, Shepherd A, Pachuau J, Martin-Caraballo M (2011) Leukemia inhibitory factor regulates trafficking of T-type Ca2+ channels. Am J Physiol 300:C576–C587CrossRefGoogle Scholar
  11. Dunger A, Cunningham JM, Delaney CA, Pipeleers DG, Lowe JE, Green MHL, Bone AJ, Green IC (1997) Cytokine induced deoxyribonucleic acid strand breaks and apoptosis in human pancreatic islet cells. Endocrinology 183:2610–2614Google Scholar
  12. Emerick MC, Stein R, Kunze R, McNulty MM, Regan MR, Hanck DA, Agnew WS (2006) Profiling the array of CaV3.1 variants from the human T-type calcium channel gene CACNA1G: alternative structures, developmental expression, and biophysical variations. Proteins 64:320–342PubMedCrossRefGoogle Scholar
  13. Ferron L, Capuano V, Ruchon Y, Deroubaix E, Coulombe A, Renaud JF (2003) Angiotensin II signaling pathways mediate expression of cardiac T-type calcium channels. Circ Res 93:1241–1248PubMedCrossRefGoogle Scholar
  14. Furukawa T, Ito H, Nitta J, Tsujino M, Adachi S, Hiroe M, Marumo F, Sawanobori T, Hiraoka M (1992) Endothelin-1 enhances calcium entry through T-type calcium channels in cultured neonatal ventricular myocytes. Circ Res 71:1242–1253PubMedCrossRefGoogle Scholar
  15. Gackière F, Bidaux G, Delcourt P, Van Coppenolle F, Katsogiannou M, Dewailly E, Bavencoffe A, Tran Van Chuoï-Mariot M, Mauroy B, Prevarskaya N, Mariot P (2008) CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 283:10162–10173PubMedCrossRefGoogle Scholar
  16. Gomez JP, Potreau D, Branka JE, Raymond G (1994) Developmental changes in Ca2+ current from newborn rat cardiomyocytes in primary culture. Pflüger Arch 428:241–249CrossRefGoogle Scholar
  17. González-Ramírez R, Martínez-Hernández E, Sandoval A, Felix R (2014) Transcription factor Sp1 regulates T-type Ca2+ channel Cav3.1 gene expression. J Cell Physiol 229:551–560PubMedCrossRefGoogle Scholar
  18. Gray LS, Perez-Reyes E, Gomora JC, Haverstick DM, Shattock M, McLatchie L, Harper J, Brooks G, Heady T, MacDonald TL (2004) The role of voltage gated T-type Ca2+ channel isoforms in mediating “capacitative” Ca2+ entry in cancer cells. Cell Calcium 36:489–497PubMedCrossRefGoogle Scholar
  19. Hamaguchi K, Leiter EH (1990) Comparison of cytokine effects on mouse pancreatic α-cell and β-cell line: viability, secretory function, and MHC antigen expression. Diabetes 39:415–425PubMedCrossRefGoogle Scholar
  20. Harraz OF, Welsh DG (2013) Protein kinase A regulation of T-type Ca2+ channels in rat cerebral arterial smooth muscle. J Cell Sci 126:2944–2954PubMedCrossRefGoogle Scholar
  21. Harraz OF, Brett SE, Welsh DG (2014) Nitric oxide suppresses vascular voltage-gated T-type Ca2+ channels through cGMP/PKG signaling. Am J Physiol 306:H279–H285CrossRefGoogle Scholar
  22. Haverstick DM, Heady TN, Macdonald TL, Gray LS (2000) Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca2+ entry. Cancer Res 60:1002–1008PubMedGoogle Scholar
  23. Hildebrand ME, David LS, Hamid J, Mulatz K, Garcia E, Gerald W, Zamponi GW, Snutch TP (2007) Selective inhibition of Cav3.3 T-type calcium channels by Gαq/11-coupled muscarinic acetylcholine receptors. J Biol Chem 282:21043–21055PubMedCrossRefGoogle Scholar
  24. Hu C, DePuy SD, Yao J, McIntire WE, Barrett PQ (2009) Protein kinase A activity controls the regulation of T-type Cav3.2 channels by Gβγ dimers. J Biol Chem 284:7465–7473PubMedCentralPubMedCrossRefGoogle Scholar
  25. Huang L, Bhattacharjee A, Taylor JT, Zhang M, Keyser BM, Marrero L, Li M (2004) [Ca2+]i regulated CaV1.3 translocation in insulin secreting cells. Am J Physiol 286:C213–C221CrossRefGoogle Scholar
  26. Iftinca M, Jawed Hamid J, Chen L, Varela D, Tadayonnejad R, Altier C, Ray W, Turner RW, Zamponi GW (2007) Regulation of T-type calcium channels by Rho-associated kinase. Nat Neurosci 7:854–860CrossRefGoogle Scholar
  27. Ignarro LJ, Buga GM, Wei LH, Bauer PM, Wu G, del Soldato P (2001) Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 98:4202–4208PubMedCentralPubMedCrossRefGoogle Scholar
  28. Iwahashi H, Hanafusa T, Eguchi Y, Nakajima H, Miyagawa J, Itoh N, Tomita K, Namba M, Kuwajima M, Noguchi T, Tsujimoto Y, Matzuzawa Y (1996) Cytokine-induced apoptotic cell death in a mouse pancreatic beta-cell line: inhibition by Bcl-2. Diabetologia 39:530–536PubMedCrossRefGoogle Scholar
  29. Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, Lee JH (2006) A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels. J Biol Chem 281:4823–4830PubMedCrossRefGoogle Scholar
  30. Keyser BM, Taylor JT, Choi S-K, Lu Y, Bhattacharjee A, Huang L, Pottle J, Matrougui K, Xu Z, Li M (2014) Role of T-type Ca2+ channels in basal [Ca2+]i regulation and basal insulin secretion in rat islet cells. Curr Trend Endocrinol 7:35–44Google Scholar
  31. Kim J-A, Park J-Y, Kang H-W, Huh S-U, Jeong S-W, Lee J-H (2006) Augmentation of Cav3.2 T-Type Calcium Channel Activity by cAMP-Dependent Protein Kinase A. J Pharmacol Exp Ther 318:230–237PubMedCrossRefGoogle Scholar
  32. Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW (2004) Expression of T-type calcium channel splice variants in human glioma. Glia 48:112–119PubMedCrossRefGoogle Scholar
  33. Leresche N, Hering J, Lambert RC (2004) Paradoxical potentiation of neuronal T-type Ca2+ current by ATP at resting membrane potential. J Neurosci 24:5592–5602PubMedCrossRefGoogle Scholar
  34. Li L, Davie JR (2010) The role of Sp 1 and Sp 3 in normal and cancer cell biology. Ann Anat 192:275–283PubMedCrossRefGoogle Scholar
  35. Li M, Zhang M, Huang L, Zhou J, Zhuang H, Taylor JT, Keyser BM, Whitehurst RM Jr (2005) T-type Ca2+ channels are involved in high glucose-induced rat neonatal cardiomyocyte proliferation. Pediatr Res 57:550–556PubMedCrossRefGoogle Scholar
  36. Li W, Zhang S-L, Wang N, Zhang B-B, Li M (2011) Blockade of T-type Ca2+ channels inhibits human ovarian cancer cell proliferation. Cancer Invest 29:339–346PubMedCrossRefGoogle Scholar
  37. Lue TF (2000) Erectile dysfunction-drug therapy. N Engl J Med 342:1802–1813PubMedCrossRefGoogle Scholar
  38. Marchetti C, Brown AM (1988) Protein kinase activator 1-oleoyl-2-acetyl-sn-glycerol inhibits two types of calcium currents in GH3 cells. Am J Physiol 254:C206–C210PubMedGoogle Scholar
  39. Marni F, Wang Y, Morishima M, Shimaoka T, Uchino T, Zheng M, Kaku T, Ono K (2009) 17 beta-estradiol modulates expression of low-voltage-activated Ca(V)3.2 T-type calcium channel via extracellularly regulated kinase pathway in cardiomyocytes. Endocrinology 150:879–888PubMedCrossRefGoogle Scholar
  40. Michels G, Er F, Eicks M, Herzig S, Hoppe UC (2006) Long-term and immediate effect of testosterone on single T-type calcium channel in neonatal rat cardiomyocytes. Endocrinology 147:5160–5169PubMedCrossRefGoogle Scholar
  41. Monteil A, Chemin J, Bourinet E, Mennessier G, Lory P, Nargeot J (2000) Molecular and functional properties of the human α1G subunit that forms T-type calcium channels. J Biol Chem 275:6090–6100PubMedCrossRefGoogle Scholar
  42. Morishima M, Wang Y, Akiyoshi Y, Miyamoto S, Ono K (2009) Telmisartan, an angiotensin II type 1 receptor antagonist, attenuates T-type Ca2+ channel expression in neonatal rat cardiomyocytes. Eur J Pharmacol 609:105–112PubMedCrossRefGoogle Scholar
  43. Nelson MT, Joksovic PM, Su P, Kang HW, Van Deusen A, Baumgart JP, David LS, Snutch TP, Barrett PQ, Lee JH, Zorumski CF, Perez-Reyes E, Todorovic SM (2007a) Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. J Neurosci 27:12577–12583PubMedCrossRefGoogle Scholar
  44. Nelson MT, Kang HW, Vitko L, Barrett PQ, Perez-Reyes E, Lee JH, Shin HS, Todorovic SM (2007b) Reducing agents sensitize C-type nociceptors by relieving high-affinity zinc inhibition of T-type calcium channels. J Neurosci 27:8250–8260PubMedCrossRefGoogle Scholar
  45. Novara M, Baldelli P, Cavallari D, Carbelli V, Giancippoli A, Carbone E (2004) Exposure to cAMP and β-adrenergic stimulation recruits Cav3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins. J Physiol 558:433–449PubMedCentralPubMedCrossRefGoogle Scholar
  46. Pachuau J, Martin-Caraballo M (2007) Extrinsic regulation of T-type Ca2+ channel expression in chick nodose ganglion neurons. Dev Neurobiol 67:1915–1931PubMedCrossRefGoogle Scholar
  47. Panner A, Cribbs LL, Zainelli GM, Origitano TC, Singh S, Wuster RD (2005) Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium 37:105–119PubMedCrossRefGoogle Scholar
  48. Park JY, Jeong SW, Perez-Reyes E, Lee JH (2003) Modulation of Ca(v) 3.2 T-type Ca2+ channels by protein kinase C. FEBS Lett 547:37–42PubMedCrossRefGoogle Scholar
  49. Park JY, Kang HW, Moon HJ, Huh SU, Jeong SW, Soldatov NM, Lee JH (2006) Activation of protein kinase C augments T-type Ca2+ channel activity without changing channel surface density. J Physiol 577:513–523PubMedCentralPubMedCrossRefGoogle Scholar
  50. Pemberton KE, Hill-Eubanks LJ, Jones SV (2000) Modulation of low-threshold T-type calcium channels by the five muscarinic receptor subtypes in NIH 3 T3 cells. Pflugers Arch 440:452–461PubMedCrossRefGoogle Scholar
  51. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161PubMedGoogle Scholar
  52. Plueanu F, Cribbs LL (2011) Regulation and function of Cav3.1 T-type calcium channels in IGF-I-stimulated pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 300:C517–C525CrossRefGoogle Scholar
  53. Pottle J, Sun C, Gray L, Li M (2013) Exploiting MCF-7 cell’s calcium dependence with interlaced therapy. J Cancer Ther 4:32–40CrossRefGoogle Scholar
  54. Rangel A, Sánchez-Armass S, Meza U (2010) Protein kinase C-mediated inhibition of recombinant T-type CaV3.2 channels by neurokinin 1 receptors. Mol Pharmacol 77:202–210PubMedCrossRefGoogle Scholar
  55. Rao F, Deng C-Y, Wu S-L, Xiao D-Z, Huang W, Deng H, Kuang S-J, Lin Q-X, Shan Z-X, Liu X-Y, Zhu J-N, Yu X-Y (2013) Mechanism of macrophage migration inhibitory factor-induced decrease of T-type Ca2+ channel current in atrium-derived cells. Exp Physiol 98:172–182PubMedCrossRefGoogle Scholar
  56. Rbinovitch A, Suarez-Pinzon WL, Shi Y, Morgan AR, Bleackley RC (1994) DNA fragmentation is an early event in cytokine-induced islet β-cell destruction. Diabetologia 37:733–738CrossRefGoogle Scholar
  57. Richard S, Neveu D, Carnac G, Bodin P, Travo P, Nargeöt J (1992) Differential expression of voltage-gated Ca2+ currents in cultivated aortic myocytes. Biochem Biophys Acta 1160:95–104PubMedGoogle Scholar
  58. Ritchie AK (1993) Estrogen increases low voltage-activated calcium current density in GH3 anterior pituitary cells. Endocrinology 132:1621–1629PubMedGoogle Scholar
  59. Rossier MF, Lesouhaitier O, Perrier E, Bockhorn L, Chiappe A, Lalevée N (2003) Aldosterone regulation of T-type calcium channels. J Steroid Biochem Mol Biol 85:282–288CrossRefGoogle Scholar
  60. Schroeder JE, Fischbach PS, McClesky EW (1990) T-type calcium channels: heterogeneous expression in rat sensory neurons and selective modulation by phorbol esters. J Neurosci 10:947–951PubMedGoogle Scholar
  61. Sen L, Smith TW (1994) T-type Ca2+ channels are abnormal in genetically determined cardiomyophathic hamster hearts. Curr Res 75:149–155Google Scholar
  62. Shan HQ, Hammarback JA, Godwin DW (2013) Ethanol inhibition of a T-type Ca2+ channel through activity of protein kinase C. Alcohol Clin Exp Res 37:1333–1342PubMedCrossRefGoogle Scholar
  63. Sun-Un H, Kang H-W, Park J-Y, Lee J-H (2008) Regulation of Cav3.2 Ca2+ channel activity by protein tyrosine phosphorylation. J Microbiol Biotechnol 18:365–368Google Scholar
  64. Suske G (1999) The Sp-family of transcription factors. Gene 238:291–300PubMedCrossRefGoogle Scholar
  65. Tao J, Hildebrand ME, Liao P, Liang MC, Tan G, Shengnan L, Snutch TP, Soong TW (2008) Activation of corticotropin-releasing factor receptor 1 selectively inhibits Cav3.2 T-type calcium channels. Mol Pharmacol 73:1596–1609PubMedCrossRefGoogle Scholar
  66. Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, Keyser BM, Agrawal KC, Hansen JB, Li M (2008a) Selective blockage of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett 267:116–124PubMedCrossRefGoogle Scholar
  67. Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, Scruggs JAS, Sikka SS, Li M (2008b) Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 14:4984–4991PubMedCentralPubMedCrossRefGoogle Scholar
  68. Todorovic SM, Jevtovic-Todorovic V, Mennerick S, Perez-Reyes E, Zorumski CF (2001) Cav3.2 channel is a molecular substrate for inhibition of T-type calcium currents in rat sensory neurons by nitrous oxide. Mol Pharmacol 60:603–610PubMedGoogle Scholar
  69. Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP (1999) Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5' CpG island in human tumors. Cancer Res 59:4535–4541PubMedGoogle Scholar
  70. Traboulsie A, Chemin J, Chevalier J-F, Nargeot J, Lory P (2007) Subunit-specific modulation of T-type calcium channels by zinc. J Physiol 578:159–171PubMedCentralPubMedCrossRefGoogle Scholar
  71. Trimarchi T, Pachuau J, Shepherd A, Dey D, Martin-Caraballo M (2009) CNTF-evoked activation of JAK and ERK mediates the functional expression of T-type Ca2+ channels in chicken nodose neurons. J Neurochem 108:246–259PubMedCentralPubMedCrossRefGoogle Scholar
  72. Tseng GN, Boyden PA (1991) Differential effects of intracellular Ca and protein kinase C on cardiac T and L Ca currents. Am J Physiol 262:H364–H379Google Scholar
  73. Wang R, Karpinski E, Pang PK (1991) Two types of voltage-dependent calcium channel currents and their modulation by parathyroid hormone in neonatal rat ventricular cells. J Cardiovasc Pharmacol 17:990–998PubMedCrossRefGoogle Scholar
  74. Wang L, Bhattacharjee A, Zuo Z, Hu F, Honkanen RE, Berggren P-O, Li M (1999) A low voltage-activated Ca2+ current mediates cytokine-induced pancreatic β-cell death. Endocrinology 140:1200–1204PubMedGoogle Scholar
  75. Wang Y, Morishima M, Zheng M, Uchino T, Mannen K, Tkahashi A, Nakaya Y, Komuro I, Ono K (2007) Transcription factors CsX/Nkx2.5 and GATA4 distinctly regulate expression of Ca2+ channels in neonatal rat heart. J Mol Cell Cardiol 42:1045–1053PubMedCrossRefGoogle Scholar
  76. Welsby PJ, Wang H, Wolfe JT, Colbran RJ, Johnson ML, Barrett PQ (2003) A mechanism for the direct regulation of T-type calcium channels by Ca2+/calmodulin-dependent kinase II. J Neurosci 23:10116–10121PubMedGoogle Scholar
  77. Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ (2003) T-type calcium channel regulation by specific G-protein βγ subunits. Nature 424:209–213PubMedCrossRefGoogle Scholar
  78. Wuerstra I (2008) Sp 1: emerging roles beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 372:1–13CrossRefGoogle Scholar
  79. Yao J, Davies LA, Howard JD, Adney SK, Welsby PJ, Howell N, Robert M, Carey RM, Colbran RJ, Barrett PQ (2006) Molecular basis for the modulation of native T-type Ca2+ channels in vivo by Ca2+/calmodulin-dependent protein kinase II. J Clin Invest 116:2403–2412PubMedCentralPubMedGoogle Scholar
  80. Zeng X, Keyser B, Li M, Sikka SC (2005) T-type (α1G) low voltage activated calcium channel interaction with nitric oxide-cyclic guanosine monophosphate pathway and regulation of calcium homeostasis in human cavernosal cells. J Sex Med 2:620–633PubMedCrossRefGoogle Scholar
  81. Zhang M, Zhuang H, Bhattacharjee A, Li M (2000a) High glucose elevated T-type calcium channel expression and basal [Ca2+]i in rat islet beta cells. Biophys J 78:69ACrossRefGoogle Scholar
  82. Zhang Y, Cribbs LL, Satin J (2000b) Arachidonic acid modulation of α1H, a cloned human T-type calcium channel. Am J Physiol 278:H184–H193Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of PhysiologyTulane University Health Sciences CenterNew OrleansUSA
  2. 2.Department of Anesthesiology and Perioperative MedicineGeorgia Regents UniversityAugustaUSA

Personalised recommendations