Skip to main content

Introduction

  • Chapter
  • First Online:

Abstract

In living organisms, homocysteine (Hcy) is a universal intermediate in the metabolic pathways of two other sulfur-containing amino acids: cysteine and methionine. Relative to cysteine, Hcy has in its side chain an extra methylene (–CH2–) group that makes it a higher homolog of cysteine. Compared with methionine, Hcy is missing a methyl (CH3–) group and thus is a lower homolog of methionine. Methionine and cysteine are two canonical coded amino acids that are incorporated by the ribosomal biosynthetic apparatus into polypeptide chains of protein at positions specified by AUG and UGU/UGC codons, respectively. In contrast, Hcy does not normally participate in protein biosynthesis (there is no codon triplet for Hcy) and is considered to be a nonprotein amino acid.

That homocystine itself might be present in proteins is a possibility that should be borne in mind and will be worth investigating

—Vincent Du Vigneaud, 1955 Nobel Prize in Chemistry laureate

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Johnson TB. Sulfur linkages in proteins. J Biol Chem. 1911;9:439–48.

    Google Scholar 

  2. Mueller JH. A new sulfur-containing amino acid isolated from the hydrolytic products of protein. J Biol Chem. 1923;58:157–69.

    Google Scholar 

  3. Butz LW, du Vigneaud V. The formation of homologue of cysteine by the decomposition of methionine with sulfuric acid. J Biol Chem. 1932;99:135–42.

    CAS  Google Scholar 

  4. Riegel B, Du Vigneaud V. The isolation of homocysteine and its conversion to a thiolactone. J Biol Chem. 1935;112:149–54.

    CAS  Google Scholar 

  5. Finkelstein JD. Homocysteine: a history in progress. Nutr Rev. 2000;58(7):193–204.

    Article  PubMed  CAS  Google Scholar 

  6. Jakubowski H. Quality control in tRNA charging. Wiley Interdiscip Rev RNA. 2012;3(3):295–310.

    Article  PubMed  CAS  Google Scholar 

  7. Jakubowski H. Quality control in tRNA charging—editing of homocysteine. Acta Biochim Pol. 2011;58(2):149–63.

    PubMed  CAS  Google Scholar 

  8. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med. 1998;49:31–62.

    Article  PubMed  CAS  Google Scholar 

  9. Maron BA, Loscalzo J. The treatment of hyperhomocysteinemia. Annu Rev Med. 2009;60:39–54.

    Article  PubMed  CAS  Google Scholar 

  10. Joseph J, Handy DE, Loscalzo J. Quo vadis: whither homocysteine research? Cardiovasc Toxicol. 2009;9(2):53–63.

    Article  PubMed  CAS  Google Scholar 

  11. Benevenga NJ. Toxicities of methionine and other amino acids. J Agric Food Chem. 1974;22(1):2–9.

    Article  PubMed  CAS  Google Scholar 

  12. Benevenga NJ, Steele RD. Adverse effects of excessive consumption of amino acids. Annu Rev Nutr. 1984;4:157–81.

    Article  PubMed  CAS  Google Scholar 

  13. Harper AE, Benevenga NJ, Wohlhueter RM. Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev. 1970;50(3):428–558.

    PubMed  CAS  Google Scholar 

  14. Dayal S, Lentz SR. Murine models of hyperhomocysteinemia and their vascular phenotypes. Arterioscler Thromb Vasc Biol. 2008;28(9):1596–605.

    Article  PubMed  CAS  Google Scholar 

  15. Matsueda S, Niiyama Y. The effects of excess amino acids on maintenance of pregnancy and fetal growth in rats. J Nutr Sci Vitaminol. 1982;28(5):557–73.

    Article  PubMed  CAS  Google Scholar 

  16. Osborne-Pellegrin MJ, Fau D. Effects of chronic absorption of dietary supplements of methionine and cystine on arterial morphology in the rat. Exp Mol Pathol. 1992;56(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  17. Fau D, Peret J, Hadjiisky P. Effects of ingestion of high protein or excess methionine diets by rats for two years. J Nutr. 1988;118(1):128–33.

    PubMed  CAS  Google Scholar 

  18. Zhou J, Moller J, Danielsen CC, Bentzon J, Ravn HB, Austin RC, et al. Dietary supplementation with methionine and homocysteine promotes early atherosclerosis but not plaque rupture in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2001;21(9):1470–6.

    Article  PubMed  CAS  Google Scholar 

  19. Hill CH, Mecham R, Starcher B. Fibrillin-2 defects impair elastic fiber assembly in a homocysteinemic chick model. J Nutr. 2002;132(8):2143–50.

    PubMed  CAS  Google Scholar 

  20. Mudd SH, Levy HL, Kraus JP. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, editors. The metabolic and molecular bases of inherited disease, vol. 2. 8th ed. New York, NY: Mc Graw-Hill; 2001. p. 2007–56.

    Google Scholar 

  21. Richie Jr JP, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA. Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J. 1994;8(15):1302–7.

    PubMed  CAS  Google Scholar 

  22. Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 2006;20(8):1064–73.

    Article  PubMed  CAS  Google Scholar 

  23. Komninou D, Leutzinger Y, Reddy BS, Richie Jr JP. Methionine restriction inhibits colon carcinogenesis. Nutr Cancer. 2006;54(2):202–8.

    Article  PubMed  CAS  Google Scholar 

  24. Harker LA, Slichter SJ, Scott CR, Ross R. Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med. 1974;291(11):537–43.

    Article  PubMed  CAS  Google Scholar 

  25. Thampi P, Stewart BW, Joseph L, Melnyk SB, Hennings LJ, Nagarajan S. Dietary homocysteine promotes atherosclerosis in apoE-deficient mice by inducing scavenger receptors expression. Atherosclerosis. 2008;197(2):620–9.

    Article  PubMed  CAS  Google Scholar 

  26. Boers G. Moderate hyperhomocysteinaemia and vascular disease: evidence, relevance and the effect of treatment. Eur J Pediatr. 1998;157 Suppl 2:S127–30.

    Article  PubMed  CAS  Google Scholar 

  27. Krupkova-Meixnerova L, Vesela K, Vitova A, Janosikova B, Andel M, Kozich V. Methionine-loading test: evaluation of adverse effects and safety in an epidemiological study. Clin Nutr. 2002;21(2):151–6.

    Article  PubMed  CAS  Google Scholar 

  28. Cottington EM, LaMantia C, Stabler SP, Allen RH, Tangerman A, Wagner C, et al. Adverse event associated with methionine loading test: a case report. Arterioscler Thromb Vasc Biol. 2002;22(6):1046–50.

    Article  PubMed  CAS  Google Scholar 

  29. Kluijtmans LA, Boers GH, Kraus JP, van den Heuvel LP, Cruysberg JR, Trijbels FJ, et al. The molecular basis of cystathionine beta-synthase deficiency in Dutch patients with homocystinuria: effect of CBS genotype on biochemical and clinical phenotype and on response to treatment. Am J Hum Genet. 1999;65(1):59–67.

    Article  PubMed  CAS  Google Scholar 

  30. Yap S, Boers GH, Wilcken B, Wilcken DE, Brenton DP, Lee PJ, et al. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol. 2001;21(12):2080–5.

    Article  PubMed  CAS  Google Scholar 

  31. Rosenblatt D, Fenton W. Disorders of transsulfuration. In: Scriver C, Beaudet A, Sly W, Valle D, Childs B, Kinzler K, Vogelstein B, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York, NY: Mc Graw-Hill; 2001. p. 2007–56.

    Google Scholar 

  32. Visy JM, Le Coz P, Chadefaux B, Fressinaud C, Woimant F, Marquet J, et al. Homocystinuria due to 5,10-methylenetetrahydrofolate reductase deficiency revealed by stroke in adult siblings. Neurology. 1991;41(8):1313–5.

    Article  PubMed  CAS  Google Scholar 

  33. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969;56(1):111–28.

    PubMed  CAS  Google Scholar 

  34. Refsum H, Nurk E, Smith AD, Ueland PM, Gjesdal CG, Bjelland I, et al. The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr. 2006;136(6 Suppl):1731S–40.

    PubMed  CAS  Google Scholar 

  35. Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med. 1997;337(4):230–6.

    Article  PubMed  CAS  Google Scholar 

  36. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325(7374):1202.

    Article  PubMed  Google Scholar 

  37. Anderson JL, Muhlestein JB, Horne BD, Carlquist JF, Bair TL, Madsen TE, et al. Plasma homocysteine predicts mortality independently of traditional risk factors and C-reactive protein in patients with angiographically defined coronary artery disease. Circulation. 2000;102(11):1227–32.

    Article  PubMed  CAS  Google Scholar 

  38. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346(7):476–83.

    Article  PubMed  CAS  Google Scholar 

  39. Daly S, Cotter A, Molloy AE, Scott J. Homocysteine and folic acid: implications for pregnancy. Semin Vasc Med. 2005;5(2):190–200.

    Article  PubMed  Google Scholar 

  40. Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Drevon CA, Gjessing HK, et al. Plasma total homocysteine level and bone mineral density: the Hordaland Homocysteine Study. Arch Intern Med. 2006;166(1):88–94.

    Article  PubMed  CAS  Google Scholar 

  41. Perla-Kajan J, Twardowski T, Jakubowski H. Mechanisms of homocysteine toxicity in humans. Amino Acids. 2007;32(4):561–72.

    Article  PubMed  CAS  Google Scholar 

  42. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–41.

    Article  PubMed  CAS  Google Scholar 

  43. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  44. Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005;3(8):1646–54.

    Article  PubMed  CAS  Google Scholar 

  45. Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, et al. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest. 2001;107(6):675–83.

    Article  PubMed  CAS  Google Scholar 

  46. Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet. 1985;37(1):1–31.

    PubMed  CAS  Google Scholar 

  47. Strauss KA, Morton DH, Puffenberger EG, Hendrickson C, Robinson DL, Wagner C, et al. Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency. Mol Genet Metab. 2007;91(2):165–75.

    Article  PubMed  CAS  Google Scholar 

  48. Lawrence de Koning AB, Werstuck GH, Zhou J, Austin RC. Hyperhomocysteinemia and its role in the development of atherosclerosis. Clin Biochem. 2003;36(6):431–41.

    Article  PubMed  CAS  Google Scholar 

  49. Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007;369(9557):208–16.

    Article  PubMed  CAS  Google Scholar 

  50. Spence JD, Bang H, Chambless LE, Stampfer MJ. Vitamin intervention for stroke prevention trial: an efficacy analysis. Stroke. 2005;36(11):2404–9.

    Article  PubMed  CAS  Google Scholar 

  51. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006;354(15):1567–77.

    Article  PubMed  CAS  Google Scholar 

  52. Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354(15):1578–88.

    Article  PubMed  CAS  Google Scholar 

  53. Wang X, Qin X, Demirtas H, Li J, Mao G, Huo Y, et al. Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet. 2007;369(9576):1876–82.

    Article  PubMed  CAS  Google Scholar 

  54. Hankey GJ, Eikelboom JW, Yi Q, Lees KR, Chen C, Xavier D, et al. Antiplatelet therapy and the effects of B vitamins in patients with previous stroke or transient ischaemic attack: a post-hoc subanalysis of VITATOPS, a randomised, placebo-controlled trial. Lancet Neurol. 2012;11:512–20.

    Article  PubMed  CAS  Google Scholar 

  55. Ebbing M, Bonaa KH, Arnesen E, Ueland PM, Nordrehaug JE, Rasmussen K, et al. Combined analyses and extended follow-up of two randomized controlled homocysteine-lowering B-vitamin trials. J Intern Med. 2010;268(4):367–82.

    Article  PubMed  CAS  Google Scholar 

  56. Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244.

    Article  PubMed  Google Scholar 

  57. de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27(6):592–600.

    Article  PubMed  Google Scholar 

  58. Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, et al. Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem. 2001;276(38):35867–74.

    Article  PubMed  CAS  Google Scholar 

  59. Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, et al. TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. J Biol Chem. 2003;278(32):30317–27.

    Article  PubMed  CAS  Google Scholar 

  60. Roybal CN, Yang S, Sun CW, Hurtado D, Vander Jagt DL, Townes TM, et al. Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem. 2004;279(15):14844–52.

    Article  PubMed  CAS  Google Scholar 

  61. Kerkeni M, Tnani M, Chuniaud L, Miled A, Maaroufi K, Trivin F. Comparative study on in vitro effects of homocysteine thiolactone and homocysteine on HUVEC cells: evidence for a stronger proapoptotic and proinflammative homocysteine thiolactone. Mol Cell Biochem. 2006;291(1–2):119–26.

    Article  PubMed  CAS  Google Scholar 

  62. Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci. 2003;26(3):137–46.

    Article  PubMed  CAS  Google Scholar 

  63. Jakubowski H. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae. EMBO J. 1991;10(3):593–8.

    PubMed  CAS  Google Scholar 

  64. Jakubowski H. The determination of homocysteine-thiolactone in biological samples. Anal Biochem. 2002;308(1):112–9.

    Article  PubMed  CAS  Google Scholar 

  65. Jakubowski H, Goldman E. Editing of errors in selection of amino acids for protein synthesis. Microbiol Rev. 1992;56(3):412–29.

    PubMed  CAS  Google Scholar 

  66. Tuite NL, Fraser KR, O’Byrne CP. Homocysteine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis. J Bacteriol. 2005;187(13):4362–71.

    Article  PubMed  CAS  Google Scholar 

  67. Sikora M, Jakubowski H. Homocysteine editing and growth inhibition in Escherichia coli. Microbiology. 2009;155(Pt 6):1858–65.

    Article  PubMed  CAS  Google Scholar 

  68. Jakubowski H. Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci. 2004;61(4):470–87.

    Article  PubMed  CAS  Google Scholar 

  69. Jakubowski H. Pathophysiological consequences of homocysteine excess. J Nutr. 2006;136(6 Suppl):1741S–9.

    PubMed  CAS  Google Scholar 

  70. Jacobsen DW. Homocysteine targeting of plasma proteins in hemodialysis patients. Kidney Int. 2006;69(5):787–9.

    Article  PubMed  CAS  Google Scholar 

  71. Jacobsen DW, Catanescu O, Dibello PM, Barbato JC. Molecular targeting by homocysteine: a mechanism for vascular pathogenesis. Clin Chem Lab Med. 2005;43(10):1076–83.

    Article  PubMed  CAS  Google Scholar 

  72. Glowacki R, Bald E, Jakubowski H. Identification and origin of Nepsilon-homocysteinyl-lysine isopeptide in humans and mice. Amino Acids. 2010;39(5):1563–9.

    Article  PubMed  CAS  Google Scholar 

  73. Jakubowski H. Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem. 1997;272(3):1935–42.

    PubMed  CAS  Google Scholar 

  74. Jakubowski H, Zhang L, Bardeguez A, Aviv A. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res. 2000;87(1):45–51.

    Article  PubMed  CAS  Google Scholar 

  75. Jakubowski H. Translational incorporation of S-nitrosohomocysteine into protein. J Biol Chem. 2000;275(29):21813–6.

    Article  PubMed  CAS  Google Scholar 

  76. Jakubowski H. Translational accuracy of aminoacyl-tRNA synthetases: implications for atherosclerosis. J Nutr. 2001;131(11):2983S–7.

    PubMed  CAS  Google Scholar 

  77. Jakubowski H. Homocysteine-thiolactone and S-nitroso-homocysteine mediate incorporation of homocysteine into protein in humans. Clin Chem Lab Med. 2003;41(11):1462–6.

    Article  PubMed  CAS  Google Scholar 

  78. Jakubowski H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J. 1999;13(15):2277–83.

    PubMed  CAS  Google Scholar 

  79. Jakubowski H. Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem. 2002;277(34):30425–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Jakubowski, H. (2013). Introduction. In: Homocysteine in Protein Structure/Function and Human Disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1410-0_1

Download citation

Publish with us

Policies and ethics