Skip to main content

On the Roots of Continuum Mechanics in Differential Geometry

- A Review -

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 541))

Abstract

The aim of this contribution is to illustrate the roots of the geometrically nonlinear kinematics of (generalized) continuum mechanics in differential geometry. Firstly several relevant concepts from differential geometry, such as connection, parallel transport, torsion, curvature, and metric (in index notation) for holonomic and anholonomic coordinate transformations are reiterated. The notation and the selection of these topics are essentially motivated by their relation to the geometrically nonlinear kinematics of continuum mechanics. Then, secondly, the kinematics are considered from the point of view of nonlinear coordinate transformations and nonlinear point transformations, respectively. Together with the discussion on the integrability conditions for the (first-order) distortions, the concept of dislocation density tensors is introduced. After touching on the possible interpretations of nonlinear elasticity using concepts from differential geometry, a detailed discussion of the kinematics of multiplicative elastoplasticity is given. The discussion culminates in a comprehensive set of twelve different types of dislocation density tensors. Potentially, these can be used to model densities of geometrically necessary dislocations and the accompanying hardening in crystalline materials. Continuum elastoplasticity formulations of this kind fall into the class of generalized (gradient-type) plasticity models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • A. Acharya, and J.L. Bassani. Lattice Incompatibility and a Gradient Theory of Crystal Plasticity. J. Mech. Phys. Solids 48:1565–1595, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  • K.H. Anthony. Die Reduktion von nichteuklidischen geometrischen Objekten in eine euklidische Form und physikalische Deutung der Reduktion durch Eigenspannungszustnde in Kristallen. Arch. Rat. Mech. Anal. 37:161–180, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  • K.H. Anthony. Die Theorie der Disklinationen. Arch. Rat. Mech. Anal. 39:43–88, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  • K.H. Anthony. Die Theorie der nichtmetrischen Spannungen in Kristallen. Arch. Rat. Mech. Anal. 40:50–78, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Becker. Incompatibility and Instability Based Size Effects in Crystals and Composites at Finite Elastoplastic Strains. Bericht Nr.: I-18, Institut für Mechanik, Lehrstuhl I, Stuttgart, 2006.

    Google Scholar 

  • B.A. Bilby, R. Bullough, and E. Smith. Continuous Distributions of Dislocations: A New Application of the Methods of Non-Riemannian Geometry. Proc. Roy. Soc. A231:263–237, 1955.

    MathSciNet  Google Scholar 

  • B.A. Bilby, and E. Smith. Continuous Distributions of Dislocations III. Proc. Roy. Soc. A236:481–505, 1956.

    MathSciNet  Google Scholar 

  • E. Cartan. Sur une Généralisation de la Notion de Courbure de Riemann et les Espace à Torsion. Comptes Rend. 174:593–575, 1922.

    MATH  Google Scholar 

  • P. Cermelli, and M. Gurtin. On the Characterization of Geometrically Necessary Dislocations in Finite Plasticity. J. Mech. Phys. Solids 49:1539–1568, 2001.

    Article  MATH  Google Scholar 

  • J.D. Clayton, D.L. McDowell, and D.J. Bammann. Modeling Dislocations and Disclinations with Finite Micropolar Elastoplasticity. Int. J. Plast. 22:210–256, 2006.

    Article  MATH  Google Scholar 

  • J.D. Clayton. Nonlinear Mechanics of Crystals. Springer, Dordrecht etc., 2011.

    Book  MATH  Google Scholar 

  • J.L. Ericksen. Tensor Fields. In Handbuch der Physik III/1. Springer, Berlin etc., 1960.

    Google Scholar 

  • S. Forest. The Micromorphic Approach for Gradient Elasticity, Viscoplasticity and Damage. ASCE J. Engng. Mech. 135:117–131, 2009.

    Article  Google Scholar 

  • P. Grammenoudis, and Ch. Tsakmakis. Plastic Intermediate Configuration and Related Spatial Differential Operators in Micromorphic Plasticity. Math. Mech. Solids 15:515–538, 2010.

    Article  MathSciNet  Google Scholar 

  • M. Gurtin. A Gradient Theory of Single-Crystal Viscoplasticity that Accounts for Geometrically Necessary Dislocations. J. Mech. Phys. Solids 50:5–32, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Haupt. Continuum Mechanics and Theory of Materials. Springer, Berlin etc., 2000.

    MATH  Google Scholar 

  • B. Hirschberger, and P. Steinmann. Classification of Concepts in Thermodynamically Consistent Generalized Plasticity. ASCE J. Engng. Mech. 135:156–170, 2009.

    Article  Google Scholar 

  • K. Kondo. On the Geometrical and Physical Foundation of the Theory of Yielding. Proc. Japan Nat. Congress Appl. Mech. 2:41–47, 1952.

    Google Scholar 

  • K. Kondo. On the Analytical and Physical Foundations of the Theory of Dislocations and Yielding by the Differential Geometry of Continua. Int. J. Engng. Sci. 2:219–251, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Kröner. Kontinuumstheorie der Versetzungen und Eigenspannungen. Erg. Angew. Math. 5:1–179, 1958.

    Google Scholar 

  • E. Kröner, and A. Seeger. Nichtlineare Elastizitätstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 3:97–119, 1959.

    Article  MATH  Google Scholar 

  • E. Kröner. Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 4:237–334, 1960.

    Google Scholar 

  • E. Kröner. Differential Geometry of Defects in Condensed Systems of Particles with only Translational Mobility. Int. J. Engng. Sci. 19:1507–1515, 1981.

    Article  MATH  Google Scholar 

  • M. Lazar, and G.A. Maugin. Nonsingular Stress and Strain Fields of Dislocations and Disclinations in First Strain Gradient Elasticity. Int. J. Engng. Sci. 43:1157–1184, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Lazar, and F.W. Hehl. Cartan’s Spiral Staircase in Physics and, in Particular, in the Gauge Theory of Dislocations. Found. Phys. 40:1298–1325, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  • K.C. Le, and H. Stumpf. A Model of Elastoplastic Bodies with Continuously Distributed Dislocations. Int. J. Plast. 12:611–627, 1996.

    Article  MATH  Google Scholar 

  • T. Liebe, and P. Steinmann. Theory and Numerics of a Thermodynamically Consistent Framework for Geometrically Linear Gradient Plasticity. Int. J. Num. Meth. Engng 51:1437–1467, 2001.

    Article  MATH  Google Scholar 

  • J.E. Marsden, and T.J.R. Hughes. Mathematical Foundations of Elasticity. Dover, New York, 1994.

    Google Scholar 

  • A. Menzel, and P. Steinmann. On the Continuum Formulation of Higher Gradient Plasticity for Single and Polycrystals. J. Mech. Phys. Solids 48:1777–1796, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Menzel, and P. Steinmann. On the Configurational Forces in Multiplicative Elastoplasticity. Int. J. Solids Struct. 44:4442–4471, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  • C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. Freeman and Company, New York, 1998.

    Google Scholar 

  • W. Noll. Materially Uniform Simple Bodies with Inhomogeneities. Arch. Rat. Mech. Anal. 27:1–32, 1967.

    Article  MathSciNet  Google Scholar 

  • J.F. Nye. Some Geometrical Relations in Dislocated Crystals. Acta Metallurgica 1:153–162, 1953.

    Article  Google Scholar 

  • B.D. Reddy, F. Ebobisse, and A. McBride. Well-Posedness of a Model of Strain Gradient Plasticity for Plastically Irrotational Materials. Int. J. Plast. 24:55–73, 2008.

    Article  MATH  Google Scholar 

  • P. Steinmann. Views on Multiplicative Elastoplasticity and the Continuum Theory of Dislocations. Int. J. Engng. Sci. 34:1717–1735, 1996.

    Article  MATH  Google Scholar 

  • B. Svendsen. Continuum Thermodynamic Models for Crystal Plasticity Including the Effects of Geometrically-Necessary Dislocations. J. Mech. Phys. Solids 50:1297–1329, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  • J.A. Schouten. Ricci-Calculus. Springer, Berlin, 1954.

    MATH  Google Scholar 

  • J.A. Schouten. Tensor Analysis for Physicists. Dover, New York, 1989.

    Google Scholar 

  • R. de Wit. A View of the Relation between the Continuum Theory of Lattice Defects and Non-Euclidean Geometry in the Linear Approximation. Int. J. Engng. Sci. 19:1475–1506, 1981.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 CISM, Udine

About this chapter

Cite this chapter

Steinmann, P. (2013). On the Roots of Continuum Mechanics in Differential Geometry. In: Altenbach, H., Eremeyev, V.A. (eds) Generalized Continua from the Theory to Engineering Applications. CISM International Centre for Mechanical Sciences, vol 541. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1371-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1371-4_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1370-7

  • Online ISBN: 978-3-7091-1371-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics