Advertisement

DB2SNA: An All-in-One Tool for Extraction and Aggregation of Underlying Social Networks from Relational Databases

  • Rania SoussiEmail author
  • Etienne Cuvelier
  • Marie-Aude Aufaure
  • Amine Louati
  • Yves Lechevallier
Chapter
Part of the Lecture Notes in Social Networks book series (LNSN, volume 6)

Abstract

In the enterprise context, People need to visualize different types of interactions between heterogeneous objects (e.g. product and site, customers and product, people interaction (social network)). The existing approaches focus on social networks extraction using web document. However a considerable amount of information is stored in relational databases. Therefore, relational databases can be seen as rich sources for extracting a social network. The extracted network has in general a huge size which makes it difficult to analyze and visualize. An aggregation step is needed in order to have more understandable graphs. In this chapter, we propose a heterogeneous object graph extraction approach from a relational database and we present its application to extract social network. This step is followed by an aggregation step in order to improve the visualisation and the analyse of the extracted social network. Then, we aggregate the resulting network using the k-SNAP algorithm which produces a summarized graph.

Keywords

Social Network Relational Database Community Detection Graph Transformation Graph Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is partially financed by the ARSA project (Social Networks Analysis for Public Administrations) and by the STIC INRIA-Tunisia project “Social network exploration for recommender systems”. The Academic chair in Business Intelligence is funded by SAP.

References

  1. 1.
    Andries, M., Gemis, M., Paredaens, J., Thyssens, I., Bussche, J.D.: Concepts for graph-oriented object manipulation. In: Proceedings of the 3rd International Conference on Extending Database Technology: Advances in Database Technology, vol. 580, pp. 21–38. Springer, London (1992)Google Scholar
  2. 2.
    Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40, 1–39 (2008)CrossRefGoogle Scholar
  3. 3.
    Barnes, J.A.: Class and committees in a Norwegian island parish. Hum. Relat. 7, 39–58 (1954)CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, D., Faloutsos, Zhan, C.Y.: Visualization of large networks with min-cutplots, a-plots and r-mat. Int. J. Hum. Comput. Stud. 655, 434–445 (2007)Google Scholar
  5. 5.
    Culotta, A., Bekkerman, R., McCallum, A.: Extracting social networks and contact information from email and the web. In: First Conference on Email and Anti-Spam, Computer Science Department Faculty Publication Series, Mountain View, California (2004)Google Scholar
  6. 6.
    Freeman, L.C.: A set of measures of centrality based upon betweenness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
  7. 7.
    Gemis, M., Paredaens, J.: An object-oriented pattern matching language. In: JSSST, vol. 742, pp. 339–355. Springer, Berlin (1993)Google Scholar
  8. 8.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U. S. A. 99, 7821–7826 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Graves, M., Bergeman, E.R., Lawrence, C.B.: Graph database systems for genomics. IEEE Eng. Med. Biol. 14, 737–745 (1995)CrossRefGoogle Scholar
  10. 10.
    Gyssens, M., Paredaens, J., Gucht, D. V.: A graph-oriented object model for database end-user interfaces. SIGMOD Rec. 19, 24–33 (1990)CrossRefGoogle Scholar
  11. 11.
    Hidders, J.: Typing graph-manipulation operations. In: Proceedings of the 9th International Conference on Database Theory (ICDT), pp. 394–409. Springer, Berlin (2002)Google Scholar
  12. 12.
    Kuper, G.M., Vardi, M.Y.: The logical data model. ACM Trans. Database Syst. 18, 379–413 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Levene, M., Loizou, G.: A graph-based data model and its ramifications. IEEE Trans. Knowl. Data Eng. 7, 809–823 (1995)CrossRefGoogle Scholar
  14. 14.
    Levene, M., Poulovassilis, A.: An object-oriented data model formalized through hyper-graphs. Data Knowl. Eng. 6, 205–224 (1991)CrossRefGoogle Scholar
  15. 15.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics Probability, University of California 1965/66, Berkeley, vol. 1, pp. 281–297 (1967)MathSciNetGoogle Scholar
  16. 16.
    Maatuk, A., Akhtar, M., Rossiter, B.N.: Relational database migration: a perspective. In: DEXA’08, Turin, pp. 676–683 (2008)Google Scholar
  17. 17.
    Mika, P.: Flink: semantic web technology for the extraction and analysis of social networks. J. Web Semant. 3, 211–223 (2005)CrossRefGoogle Scholar
  18. 18.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B 38, 321–330 (2004)CrossRefGoogle Scholar
  20. 20.
    Newman M.E.J, Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)CrossRefGoogle Scholar
  21. 21.
    Ng, A., Jordan, M., Weiss, Y., Dietterich, T., Becker, S., Ghahramani, Z.: Advances in Neural Information Processing Systems. Chapter on Spectral Clustering: Analysis and an Algorithm, vol. 14. MIT Press, Cambridge (2002)Google Scholar
  22. 22.
    Pentland, A.: Socially aware computation and communication. Computer 38, 33–40 (2005)CrossRefGoogle Scholar
  23. 23.
    Santo, F.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Schaeffer, S.A.: Graph clustering. Comput. Sci. Rev. 1, 27–64 (2007)CrossRefGoogle Scholar
  25. 25.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)CrossRefGoogle Scholar
  26. 26.
    Soussi, R., Aufaure, M.A., Baazaoui, H.: Towards social network extraction using a graph database. In: Proceedings of Second International Conference on Advances in Databases, Knowledge, and Data Applications, Menuires, pp. 28–34 (2010)Google Scholar
  27. 27.
    Rodrigues Jr., J.F., Traina, A.J.M., Faloutsos, C., Traina Jr., C.: Supergraph visualization. In: ISM ’06: Proceedings of the Eighth IEEE International Symposium on Multimedia, pp. 227–234. IEEE Computer Society, Washington, DC (2006)Google Scholar
  28. 28.
    Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In: SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 567–580. ACM, New York (2008)Google Scholar
  29. 29.
    von Luxburg, U.: A tutorial on spectral clustering, vol. 149. Technical Report, Max Planck Institute for Biological Cybernetics (2006)Google Scholar
  30. 30.
    Washio T., Motoda, H.: State of the art of graph-based data mining. SIGKDD Explor. Newsl. 5, 59–68 (2003)CrossRefGoogle Scholar
  31. 31.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  32. 32.
    Xu, X., Zhan, J., Zhu, H.: Using social networks to organize researcher community. In: Proceedings of the IEEE ISI 2008 Paisi, Paccf, and SOCO International Workshops on Intelligence and Security Informatics, pp. 421–427. Springer, Heidelberg (2008)Google Scholar
  33. 33.
    Yan X., Han J.: gSpan: Graph-based substructure pattern mining. In: Proceedings of ICDM’02, Maebashi City, pp. 721–724 (2002)Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Rania Soussi
    • 1
    Email author
  • Etienne Cuvelier
    • 1
  • Marie-Aude Aufaure
    • 1
    • 2
  • Amine Louati
    • 2
    • 3
  • Yves Lechevallier
    • 2
  1. 1.Ecole Centrale Paris, MAS Laboratory, Business Intelligence TeamChatenay-MalabryFrance
  2. 2.INRIA Paris-RocquencourtAxis TeamRocquencourtFrance
  3. 3.ENSI, RIADI-GDL LaboratoryCampus Universitaire de la ManoubaManoubaTunisia

Personalised recommendations